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Abstract

How to measure and model volatility is an important issue in finance. Recent
research uses high frequency intraday data to construct ex post measures of daily
volatility. This paper uses a Bayesian model averaging approach to forecast realized
volatility. Candidate models include autoregressive and heterogeneous autoregres-
sive (HAR) specifications based on the logarithm of realized volatility, realized power
variation, realized bipower variation, a jump and an asymmetric term. Applied to
equity and exchange rate volatility over several forecast horizons, Bayesian model
averaging provides very competitive density forecasts and modest improvements in
point forecasts compared to benchmark models. We discuss the reasons for this,
including the importance of using realized power variation as a predictor. Bayesian
model averaging provides further improvements to density forecasts when we move
away from linear models and average over specifications that allow for GARCH
effects in the innovations to log-volatility.
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1 Introduction

How to measure and model volatility is an important issue in finance. Volatility is latent
and not observed directly. Traditional approaches are based on parametric models such
as GARCH or stochastic volatility models. In recent years, a new approach to model-
ing volatility dynamics has become very popular which uses improved measures of ex
post volatility constructed from high frequency data. This new measure is called real-
ized volatility (RV) and is discussed formally by Andersen, Bollerslev, Diebold and Labys
(2001), Andersen, Bollerslev, Diebold and Ebens (2001) and Barndorff-Nielsen and Shep-
hard (2002a,2002b).1 RV is constructed from the sum of high frequency squared returns
and is a consistent estimator of integrated volatility plus a jump component for a broad
class of continuous time models. In contrast to traditional measures of volatility, such as
squared returns, realized volatility is more efficient. Recent work has demonstrated the
usefulness of this approach in finance. For example, Bollerslev and Zhou (2002) use real-
ized volatility to simplify the estimation of stochastic volatility diffusions, while Fleming,
Kirby and Ostdiek (2003) demonstrate that investors who use realized volatility improve
portfolio decisions.

This paper investigates Bayesian model averaging for models of volatility and con-
tributes to a growing literature that investigates time series models of realized volatility
and their forecasting power. Recent contributions include Andersen, Bollerslev, Diebold
and Labys (2003), Andersen, Bollerslev and Meddahi (2005), Andreou and Ghysels (2002),
Koopman, Jungbacker and Hol (2005), Maheu and McCurdy (2002), and Martens, Dijk
and Pooter (2004). These papers concentrate on pure time series specifications of RV,
however, there may be benefits to model averaging and including additional volatility
proxies.

Barndorff-Nielsen and Shephard (2004) have defined several new measures of volatility,
and associated estimators. Realized power variation (RPV), is constructed from the sum
of powers of the absolute value of high frequency returns. This is a consistent estimator
of the integral of the spot volatility process raised to a positive power (integrated power
variation). Realized bipower variation, which is defined as the sum of the products of
intraday adjacent returns, is a consistent estimator of integrated volatility.

There are several reasons why RPV may improve the forecasting of volatility. Barndorff-
Nielsen and Shephard (2004) show that power variation is robust to jumps. Jumps are
generally large outliers that may have a strong effect on model estimates and forecasts.
Second, the absolute value of returns displays stronger persistence than squared returns
(Ding, Granger and Engle (1993)), and therefore may provide a better signal for volatil-
ity. Third, Forsberg and Ghysels (2007), Ghysels, Santa-Clara and Valkanov (2006) and
Ghysels and Sinko (2006) demonstrate that absolute returns (power variation of order 1)
enhance volatility forecasts. Forsberg and Ghysels (2007) argue that the gains are due to
the higher predictability, smaller sampling error and a robustness to jumps.2

1Earlier use of realized volatility includes French, Schwert and Stambaugh (1987), Schwert (1989),
and Hsieh (1991).

2Other papers that have used realized power variation include Ghysels et al. (2007). A range of
different volatility estimators is discussed in Barndorff-Nielsen and Shephard (2005).
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Building on this work, we show empirically for data from equity and foreign exchange
markets that persistence is highest for realized power variation measures. The correlation
between realized volatility and lags of realized power variation as a function of the order
p, is maximized for 1.0 ≤ p ≤ 1.5, and not p = 2, which corresponds to realized volatility.
Compared with models using just realized volatility, daily squared returns or the intraday
range, we find that power variation and bipower variation can provide improvements.

These observations motivate a wide range of useful specifications using realized volatil-
ity, power variation of several orders, bipower variation, a jump and an asymmetric term.
We focus on the benefits of Bayesian model averaging (BMA) for forecasts of daily, weekly
and biweekly average realized volatility. BMA is constructed from autoregressive type
parameterizations and variants of the heterogeneous autoregressive (HAR-log) model of
Corsi (2004) and Andersen et al. (2007) extended to include different regressors. Choos-
ing one model ignores model uncertainty, understates the risk in forecasting and can lead
to poor predictions (Hibon and Evgeniou (2004)).3 BMA combines individual model fore-
casts based on their predictive record. Therefore, models with good predictions receive
large weights in the Bayesian model average.

We compare models’ density forecasts using the predictive likelihood. The predictive
likelihood contains the out-of-sample prediction record of a model, making it the central
quantity of interest for model evaluation (Geweke and Whiteman (2005)). The empirical
results show BMA to be consistently ranked at the top among all benchmark models,
including a simple equally weighted model average. Considering all data series and fore-
cast horizons, the BMA is the dominate model. Although there are substantial gains in
BMA based on density forecasts, point forecasts using the predictive mean show smaller
improvements.

The importance of GARCH dynamics in time series models of log-realized-volatility
has been documented by Bollerslev et al. (2007). We find that Bayesian model averaging
provides further improvements to density forecasts when we move away from linear models
and average over specifications that allow for GARCH effects. For example, it provides
improvements relative to a benchmark HAR-log-GARCH model for daily density forecasts.

There are two main reasons why BMA delivers good performance. First, we show
that no single specification dominates across markets and forecast horizons. For each
market and forecast horizon there is considerable model uncertainty in all our applica-
tions. In other words, there is model risk associated with selecting any individual model.
The ranking of individual models can change dramatically over data series and forecast
horizons. Bayesian model averaging provides an optimal way to combine this informa-
tion.4 The second reason, is that based on the predictive likelihood, including RPV terms
can dramatically improve forecasting power. Although specifications with RPV terms
also display considerable model uncertainty, BMA gives them larger weights when they
perform well.

3Recent examples of Bayesian model averaging in a macroeconomic context include Fernández, Ley,
and Steel (2001), Jacobson and Karlsson (2004), Koop and Potter (2004), Pesaran and Zaffaroni(2005)
and Wright (2003).

4Based on a logarithmic scoring rule, averaging over all the models provides superior predictive ability
(Raftery et al. (1997)).
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The relative forecast performance of the specifications that enter the model average is
ordered as follows. As a group, models with RPV regressors deliver forecast improvements.
Bipower variation delivers relatively smaller improvements over models with only realized
volatility regressors. A realized jump term which is constructed from bipower variation
is important in all model formulations.

This paper is organized as follows. Section 2 discusses the econometric issues for
Bayesian estimation and forecasting. Section 3 reviews the theory behind the improved
volatility measures: realized volatility, realized power variation and realized bipower vari-
ation. Section 4 details the data and the adjustment to RV and realized bipower variation
in the presence of market microstructure noise. The selection of regressors is discussed in
Section 5. Section 6 presents the different configurations that enter the model averaging
while Section 7 discusses forecasting results as well as the role of realized power variation,
and the performance of BMA when allowing for GARCH effects. The last section con-
cludes. An appendix explains how to calculate the marginal likelihood, and describes the
algorithm to estimate volatility models with GARCH innovations.

2 Econometric Issues

2.1 Bayesian Estimation and Gibbs Sampling

To conduct formal model comparisons and model averaging we use Bayesian estimation
methods. All the models we consider take the form of a standard normal linear regression

yt = Xt−1β + εt, εt ∼ N(0,σ2). (1)

In the following let YT = [y1, ..., yT ]′ be a vector of size T , and X a T x k matrix of
regressors with row Xt−1. Inference focuses on the posterior density. By Bayes rule, the
prior distribution p(β,σ2), given data and a likelihood function p(YT |β,σ2), is updated to
the posterior distribution,5

p(β,σ2|YT ) =
p(YT |β,σ2)p(β,σ2)∫ ∫

p(YT |β,σ2)p(β,σ2)dβdσ2
. (2)

We specify independent conditionally conjugate priors for β ∼ N(b0, B0), and σ2 ∼
IG

(
v0
2 , s0

2

)
, where IG(·, ·) denotes the inverse gamma distribution. Although the pos-

terior is not a well known distribution we can obtain samples from the posterior based on
a Gibbs sampling scheme. Specifically, the conditional distributions used in sampling are
β|YT ,σ2 ∼ N(M,V ), where M = V

(
σ−2X ′YT + B−1

0 b0

)
, V =

(
σ−2X ′X + B−1

0

)−1
, and

σ2|YT , β ∼ IG
(

v
2 ,

s
2

)
where v = T + v0, s = (YT − Xβ)′(YT − Xβ) + s0.

Good introductions to Gibbs sampling and Markov chain Monte Carlo (MCMC) meth-
ods can be found in Chib (2001) and Geweke (2005). Formally, Gibbs sampling involves
the following steps. Select a starting value, β(0) and σ2(0), and number of iterations N ,
then iterate on

5To minimize notation we suppress the conditioning on X in the following derivations.
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• sample β(i) ∼ p(β|YT ,σ2(i−1)).

• sample σ2(i) ∼ p(σ2|YT , β(i)).

Repeating these steps N times produces the draws
{
θ(i)

}N

i=1
= {β(i),σ2(i)}N

i=1. To
eliminate the effect of starting values, we drop the first N0 draws and collect the next N .
For a sufficiently large sample this Markov chain converges to draws from the station-
ary distribution which is the posterior distribution. A simulation consistent estimate of
features of the posterior density can be obtained by sample averages. For example, the
posterior mean of the function g(·) can be estimated as

E[g (θ) |YT ] ≈ 1

N

N∑

i=1

g
(
θ(i)

)

which converges almost surely to E [g (θ) |YT ] as N goes to infinity.
In this paper we compare forecasts of models based on the predictive mean. The

predictive mean is computed as

E[yT+1|YT ] ≈ 1

N

N∑

i=1

XT β(i). (3)

As a new observation arrives the posterior is updated through a new round of Gibbs
sampling and a forecast for yT+2 can be calculated.

2.2 Model Comparison

There is a long tradition in the Bayesian literature of comparing models based on pre-
dictive distributions (Box (1980), Gelfand and Dey (1994), and Gordon (1997)). In a
similar fashion to the Bayes factor which is based on all the data, we can compare the
performance of models on a specific out-of-sample period. Given the information set
Ys−1 = {y1, ..., ys−1}, the predictive likelihood (Geweke (1995,2005)) for model Mk is de-
fined for the data ys, ..., yt, s < t as

p(ys, ..., yt|Ys−1,Mk) =

∫
p(ys, ..., yt|θk, Ys−1,Mk)p(θk|Ys−1,Mk)dθk, (4)

where p(ys, ..., yt|θk, Ys−1,Mk) is the conditional data density given Ys−1. The predictive
likelihood is the predictive density evaluated at the realized outcome ys, ..., yt. Note that
integration is performed with respect to the posterior distribution based on the data Ys−1.
If s = 1, this is the marginal likelihood and the above equation changes to

p(y1, ..., yt|Mk) =

∫
p(y1, ..., yt|θk,Mk)p(θk|Mk)dθk, (5)

where p(y1, ..., yt|θk, Mk) is the likelihood and p(θk|Mk) the prior for model Mk.
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The predictive likelihood contains the out-of-sample prediction record of a model,
making it the central quantity of interest for model evaluation (Geweke and Whiteman
(2005)). For example, (4) is simply the product of the individual predictive likelihoods,

p (ys, ..., yt|Ys−1,Mk) =
t∏

j=s

p (yj|Yj−1,Mk) , (6)

where each of the terms p (yj|Yj−1,Mk) has parameter uncertainty integrated out. The
relative value of density forecasts can be compared using the realized data ys, ..., yt with
the predictive likelihoods for two or more models.

The Bayesian approach allows for the comparison and ranking of models by predictive
Bayes factors. Suppose we have K different models denoted by Mk, k = 1, . . . , K, then
the predictive Bayes factor for the data ys, ..., yt and models M0 versus M1 is

PBF01 = p(ys, ..., yt|Ys−1,M0)/p(ys, ..., yt|Ys−1,M1).

This summarizes the relative evidence for model M0 versus M1. An advantage of using
Bayes factors for model comparison is that they automatically include Occam’s razor effect
in that they penalize highly parameterized models that do not deliver improved predictive
content. For the advantages of the use of Bayes factors see Koop and Potter (1999). Kass
and Raftery (1995) recommend considering twice the logarithm of the Bayes factor for
model comparison, as it has the same scaling as the likelihood ratio statistic.6 In this
paper we report estimates of the predictive likelihood corresponding to an out-of-sample
period in which point forecasts are also investigated.

2.3 Calculating the Predictive Likelihood

The previous results require the calculation of the predictive likelihood for each model.
Following Geweke (1995), each of the individual terms of the right hand side of (6) can
be estimated consistently from the Gibbs sampler output as

p (yj|Yj−1,Mk) ≈
1

N

N∑

i=1

p
(
yj|θ(i)

k , Yj−1,Mk

)
, (7)

where θ(i)
k = {β(i)

k ,σ2(i)
k }. p(yj|θ(i)

k , Yj−1,Mk) in the context of (1) denotes the normal

density with mean Xj−1β
(i)
k and variance σ2(i)

k , evaluated at yj, and the Gibbs sampler
draws are obtained based on the information set Yj−1.

2.4 Bayesian Model Averaging

In a Bayesian context it is straightforward to entertain many models and combine their
information and forecasts in a consistent fashion. There are several justifications for

6Kass and Raftery suggest a rule-of-thumb of support for M0 based on 2 log PBF01: 0 to 2 not worth
more than a bare mention, 2 to 6 positive, 6 to 10 strong, and greater than 10 as very strong.
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Bayesian model averaging. Min and Zellner (1993) show that the model average minimizes
the expected predicted squared error when the models are exhaustive, while it is superior
based on a logarithmic scoring rule (Raftery et al. (1997)). For an introduction to
Bayesian model averaging see Hoeting et al. (1999) and Koop (2003). The probability of
model Mk given the information set YT is7,

p(Mk|YT ) =
p(YT |Mk)p(Mk)∑K
i=1 p(YT |Mi)p(Mi)

(8)

where K is the total number of models. In this equation, p(Mk) is the prior model
probability, and p(YT |Mk) is the marginal likelihood. In the context of recursive out-of-
sample forecasts, it is more convenient to work with a period-by-period update to model
probabilities. Given YT−1, after observing a new observation yT , we update as

p(Mk|yT , YT−1) =
p(yT |YT−1,Mk)p(Mk|YT−1)∑K
i=1 p(yT |YT−1,Mi)p(Mi|YT−1)

. (9)

p(yT |YT−1, Mk) is the predictive likelihood value for model Mk based on information YT−1,
and can be estimated by (7). p(Mk|YT−1) is last period’s model probability.

The predictive likelihood for BMA is an average of each of the individual model pre-
dictive likelihoods,

p(yT+1|YT ) =
K∑

i=1

p(yT+1|YT ,Mi)p(Mi|YT ), (10)

where each model’s predictive density is estimated from (7). Similarly, the predictive
mean of yT+1 is,

E[yT+1|YT ] =
K∑

i=1

E[yT+1|YT ,Mi]p(Mi|YT ), (11)

which is a weighted average, using the model probabilities, of model specific predictive
means.

3 Realized Volatility, Power Variation and Bipower
Variation

A good discussion of the class of special semi-martingales, which are stochastic processes
consistent with arbitrage-free prices can be found in Andersen, Bollerslev, Diebold and
Labys (2003). These processes allow for a wide range of dynamics including jumps in the
mean and variance process as well as long memory.

For illustration, consider the following logarithmic price process:

dp(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤ T, (12)

7Note that (8) can be written as p(Mk)/
∑K

i=1 BFikp(Mi), where BFik ≡ p(YT |Mi)/p(YT |Mk) is the
Bayes factor for model i versus model k.
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where µ(t) is a continuous and locally bounded variation process, σ(t) is the stochastic
volatility process, W (t) denotes a standard Brownian motion, dq(t) is a counting process
with dq(t) = 1 corresponding to a jump at time t and dq(t) = 0 corresponding to no
jump, a jump intensity λ(t), and κ(t) refers to the size of a realized jump. The increment
in quadratic variation from time t to t + 1 is defined as

QVt+1 =

∫ t+1

t

σ2(s)ds +
∑

t<s≤t+1,dq(s)=1

κ2(s) (13)

where the first component, called integrated volatility, is from the continuous component
of (12), and the second term is the contribution from discrete jumps. Barndorff-Nielsen
and Shephard (2004) consider integrated power variation of order p defined as

IPVt+1(p) =

∫ t+1

t

σp(s)ds (14)

where 0 < p ≤ 2. Clearly IPVt+1(2) is integrated volatility.
To consider estimation of these quantities, we normalize the daily time interval to

unity and divide it into m periods. Each period has length ∆ = 1/m. Then define the
∆ period return as rt,j = p(t + j∆) − p(t + (j − 1)∆), j = 1, ...,m. Note that the daily
return is rt =

∑m
j=1 rt,j. Barndorff-Nielsen and Shephard (2004) introduce the following

estimator called realized power variation of order p defined as

RPVt+1(p) = µ−1
p ∆

1−p/2
m∑

j=1

|rt,j|p, (15)

where µp = E |µ|p = 2p/2 Γ( 1
2 (p+1))

Γ( 1
2 )

for p > 0 where µ ∼ N(0, 1). Note that for the special

case of p = 2 equation (15) becomes

RPVt+1(2) =
m∑

j=1

rt,j
2 ≡ RVt+1 (16)

and we have the realized volatility, RVt+1, estimator discussed in Andersen, Bollerslev,
Diebold and Labys (2001), Barndorff-Nielsen and Shephard (2002b), and Meddahi (2002).
To avoid confusion we refer to RPVt+1(p) for p < 2 as realized power variation, and to
(16) as RVt+1.

Another estimator considered in Barndorff-Nielsen and Shephard (2004) is realized
bipower variation which is,

RBPt+1 ≡ µ−2
1

m∑

j=2

|rt,j−1||rt,j|, (17)

where µ1 =
√

2/π.
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As shown by the papers discussed above, as m → ∞

RPVt+1(p)
p→ IPVt+1 (p) =

∫ t+1

t

σp(s)ds for p ∈ (0, 2) (18)

RVt+1
p→ QVt+1 =

∫ t+1

t

σ2(s)ds +
∑

κ2(s) (19)

RBPt+1
p→ IPVt+1(2) =

∫ t+1

t

σ2(s)ds. (20)

Note that the asymptotics operate within a fixed time interval by sampling more fre-
quently. RV converges to quadratic variation, and the latter measures the ex post varia-
tion of the process regardless of the model or information set. Therefore, realized volatility
is the relevant quantity to focus on the modeling and forecasting of volatility. For further
details on the relationship between RV and the second moments of returns see Andersen,
Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen and Shephard (2002a,2005) and
Meddahi (2003).

From these results, it follows that the jump component in QVt+1 can be estimated by
RVt+1 − RBPt+1. RPVt+1(p) for p ∈ (0, 2) and RBPt+1 are robust to jumps. Forsberg
and Ghysels (2007), Ghysels, Santa-Clara and Valkanov (2006) and Ghysels and Sinko
(2006) have found that absolute returns (power variation of order 1) improve volatility
forecasting using criterions such as adjusted R2 and Mean Squared Error. They argue that
improvements are due to the higher predictability, less sampling error and a robustness
to jumps.

4 Data

We investigate model forecasts for equity and exchange rate volatility over several forecast
horizons. For equity we consider the S&P 500 index by using the Spyder (Standard &
Poor’s Depository Receipts), which is an Exchange Traded Fund that represents ownership
in the S&P 500 Index. The ticker symbol is SPY. Since this asset is actively traded, it
avoids the stale price effect of the S&P 500 index. The Spyder price transaction data are
obtained from the Trade and Quotes (TAQ) database. After removing errors from the
transaction data8, a 5 minute grid from 9:30 to 16:00 was constructed by finding the closest
transaction price before or equal to each grid point time. The first observation of the day
occurring just after 9:30 was used for the 9:30 grid time. From this grid, 5 minute intraday
log returns are constructed. The intraday return data was used to construct daily returns
(open to close prices), and the associated realized volatility, realized bipower variation
and realized power variation of order 0.5, 1 and 1.5 following the previous section. An
adjusted estimator of RV and RBP to correct for market microstructure dynamics is

8Data was collected with a TAQ correction indicator of 0 (regular trade) and when possible a 1 (trade
later corrected). We also excluded any transaction with a sale condition of Z, which is a transaction
reported on the tape out of time sequence, and with intervening trades between the trade time and the
reported time on the tape. We also checked any price transaction change that was larger than 3%. A
number of these were obvious errors and were removed.
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discussed below. Given the structural break found in early February 1997 in Liu and
Maheu (2008) our data begins in February 6, 1997 and goes to March 30, 2004.9 We
reserve the first 35 observations as startup values for the models. The final data has 1761
observations.

High frequency foreign exchange data on the JPY-USD and DEM-USD spot rates are
from Olsen Financial Technologies. We adopt the official conversion rate between DEM
and Euro after January 1, 1999 to obtain the DEM-USD rate. Bid and ask quotes are
recorded on a five minute grid when available. To fill in the missing values on the grid we
take the closest previous bid and ask. The spot rate is taken as the logarithmic middle
price for each grid point over a 24 hour day. The end of a day is defined as 21:00:00 GMT
and the start as 21:05:00 GMT. Weekends (21:05:00 GMT Friday - 21:00:00 GMT Sunday)
and slow trading dates (December 24-26, 31 and January 1-2) and the moving holidays
Good Friday, Easter Monday, Memorial Day, July Fourth, Labor Day, Thanksgiving
and the day after were removed. A few slow trading days were also removed. From
the remaining data, 5 minute returns where constructed, as well as the daily volatility
measures and the daily return (close to close prices). The sample period for FX data is
from February 3, 1986 to December 30, 2002. JPY-USD data has 4192 observations. The
DEM-USD data has 4190 observations. Conditioning on the first 35 observations leaves
us 4157 observations (JPY-USD) and 4155 observations (DEM-USD).

4.1 Adjusting for Market Microstructure

It is generally accepted that there are dynamic dependencies in high-frequency returns
induced by market microstructure frictions, see Bandi and Russell (2006), Hansen and
Lunde (2006a), Oomen (2005) and Zhang, Mykland and Ait-Sahalia (2005) among others.
The raw RV constructed from (16) can be an inconsistent estimator. To reduce the effect
of market microstructure noise10, we employ a kernel-based estimator suggested by Hansen
and Lunde (2006a) which utilizes autocovariances of intraday returns to construct realized
volatility as,

RV q
t =

m∑

i=1

r2
t,i + 2

q∑

w=1

(
1 − w

q + 1

) m−w∑

i=1

rt,irt,i+w (21)

where rt,i is the ith logarithmic return during day t, and q is a small non-negative integer.
The theoretical results concerning this estimator is due to Barndorff-Nielsen et al. (2006a).
This Bartlett-type weights ensure a positive estimate, and Barndorff-Nielsen et al. (2006b)
show that it is almost identical to the subsample-based estimator of Zhang, Mykland and
Ait-Sahalia (2005).

We list the summary statistics for daily squared returns, unadjusted RV and the
adjusted RV for q = 1, 2 and 3 in Table 1. As a benchmark, the average daily squared

9The main effect of the break is on the variance of log-volatility. We also investigated breaks in the
JPY-USD and DEM-USD realized volatility data discussed below and found no evidence of parameter
change.

10An alternative is to sample the price process at a lower frequency to minimize market microstructure
contamination. However, the asymptotics in Section 3 suggest a loss of information in lower sampling
frequencies.
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return can be treated as an unbiased estimator of the mean of latent volatility. However,
it is very noisy which can be seen from its large variance. The RV row lists the statistics
for the unadjusted RV. The average difference between the mean of daily squared returns
and unadjusted RV is fairly large. This suggests significant market microstructure biases.
The adjusted RV provides an improvement. In our work we use q = 3. The time series of
adjusted log(RVt) measures are shown in Figure 1.

Market microstructure also contaminates bipower variation. As in Andersen et al.
(2007) and Huang and Tauchen (2005), using staggered returns will decrease the correla-
tion in adjacent returns induced by the microstructure noise. Following their suggestion,
we use an adjusted bipower variation as

R̂BP t+1 =
π

2

m

m − 2

m∑

j=3

|rt,j−2||rt,j|. (22)

In the following we refer to adjusted RV q
t as RVt, and R̂BP t+1 as RBPt+1. Of course

market microstructure may also affect power variation measures, but it is much harder to
correct for and empirically may be less important (Ghysels and Sinko (2006)).

5 Predictors of Realized Volatility

This section provides a brief discussion of the potential predictors that could be used
to forecast realized volatility. Although daily squared returns are a natural measure
of volatility, as shown by Andersen and Bollerslev (1998) they are extremely noisy. A
popular proxy for volatility that exploits intraday information is the range estimator used
in Brandt and Jones (2006). It is defined as ranget = log(PH,t/PL,t), where PH,t and PL,t

are the intraday high and low price levels on day t. According to Alizadeh, Brandt and
Diebold (2002), the log-range has an approximately Gaussian distribution, and is more
efficient than daily squared returns.

Besides lagged values of realized volatility, previous work by Forsberg and Ghysels
(2007), Ghysels, Santa-Clara and Valkanov (2006) and Ghysels and Sinko (2006) has
shown power variation of order 1 to be a good predictor. Other orders may be use-
ful. Figure 2 displays the sample autocorrelation function for log(RVt), log(RPVt(.5)),
log(RPVt(1)), log(RPVt(1.5)) and log(RBPt) for the JPY-USD. The ACF for realized
volatility is below all the others. Each of the power variation measures is more persistent
over a wide range of lags.

Figure 3 displays estimates of corr(log(RVt), log(RPVt−i(p))) as a function of p for
different lag lengths i = 1, 5, 10, 20. The order of RPV ranges from 0.01 to 2 with incre-
ments of 0.01. Recall that RPVt(2) = RVt. The correlation is maximized with a power
variation order less than 2 in each case. The largest correlation for the JPY-USD data
are: 0.6732 (i = 1, p = 1.39); 0.4906 (i = 5, p = 1.31); 0.3866 (i = 15, p = 1.25); and
0.2862 (i = 20, p = 1.01). On the other hand, the correlation with realized bipower (not
shown in the figure) is always lower. For example, corr(log(RVt), log(RBPt−i)), is 0.6658
(i = 1), 0.4820 (i = 5), 0.3785 (i = 10), and 0.2745 (i = 20).
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Finally, Table 2 gives out-of-sample predictive likelihoods11 and several forecast loss
functions for a linear model discussed in the next section. All models have the common
regressand of log(RVt) from JPY-USD or DEM-USD but differ by the regressors. Included
are versions with realized volatility, RPV(1), RPV(1.5), RBP, the daily range and daily
squared returns. The range provides a considerable improvement upon daily squared re-
turns, while RV , RPV , and RBP provide further improvements. Based on the predictive
likelihoods, for the JPY-USD market RPV (1) has a marginally better performance than
RV . On the other hand the version with RBP is the best in the DEM-USD market.
Clearly, there is risk in selecting any one specification.

Based on this discussion we will confine model averaging to different specifications
featuring realized volatility, realized power variation and realized bipower variation, and
will not consider daily squared returns or the range. The specifications are discussed in
the next section.

6 Models

We consider two families of linear models. The first is based on the heterogeneous au-
toregressive (HAR) model of realized volatility by Corsi (2004). Corsi (2004) shows that
this model can approximate many of the features of volatility including long-memory.
Specifically, we use the logarithmic version (HAR-log) similar to Andersen, Bollerslev
and Diebold (2007). Our benchmark model is

log(RVt,h) = β0 + β1 log(RVt−1,1) + β2 log(RVt−5,5) + β3 log(RVt−22,22)

+ βJJt−1 + ut,h, ut,h ! NID(0,σ2), (23)

where RVt,h = 1
h

∑h
i=1 RVt+i−1 is the h-step ahead average realized volatility. This model

postulates three factors that affect volatility: a daily (h = 1), weekly (h = 5) and monthly
(h = 22) factor. The importance of jumps have been recognized by Andersen, Bollerslev,
and Diebold (2007), Huang and Tauchen(2005), and Tauchen and Zhou (2005) among
others. All of the models include a jump term defined as

Jt =

{
log (RVt − RBPt + 1) when RVt − RBPt > 0

0 otherwise
(24)

where we add 1 to ensure Jt ≥ 0. For the S&P 500, an asymmetric term is included in
all specifications and is defined as

Lt =

{
log(RVt + 1) when daily return < 0

0 otherwise.
(25)

To consider other specifications define RPVt,h(p) = 1
h

∑h
i=1 RPVt+i−1(p) and RBPt,h =

1
h

∑h
i=1 RBPt+i−1 as the corresponding average realized power and bipower variation, re-

spectively. Note the special case RVt,h = RPVt,h(2). A summary of the specifications is

11Using the notation of Section 2.2 the predictive likelihood is computed as
∏t

j=s p (yj |Yj−1), s < t
over the out-of-sample period.

12



listed in Table 3. The first panel displays HAR-type configurations. Each row indicates
the regressors included in a model. A 1 indicates a daily factor (e.g. log(RPVt−1,1(1))) a 2
means a daily and weekly factor (e.g. log(RPVt−1,1(1)), log(RPVt−5,5(1))) and a 3 means a
daily, weekly and monthly factor (e.g. log(RPVt−1,1(1)), log(RPVt−5,5(1)), log(RPVt−22,22(1)))
using the respective regressor in that column.

Models 1–5 are HAR-log specifications in logarithms of either RV, RPV(.5), RPV(1),
RPV(1.5) or RBP. Models 6–41 provide mixtures of volatility HAR terms. A typi-
cal model would have regressors of log(RVt−h,h) and log (RPVt−h,h(p)) or log(RBPt−h,h)
for h = 1, 5 and 22 as well as a jump term Jt−1. For instance, specification 20 has
regressors Xt−1 = [1 log(RVt−1,1) log(RVt−5,5) log(RPVt−1,1(0.5)) log(RPVt−5,5(0.5))
log(RPVt−22,22(0.5)) Jt−1]. In the case of equity, Lt−1 is included, while it is omitted in
the FX applications.12

The next set of models are based on autoregressive type specifications. In the second
panel of Table 3, models 42–56 are AR specifications in logarithms of either RV, RPV(.5),
RPV(1), RPV(1.5) or RBP. Models 57–72 provide AR models of mixtures of volatility
terms. For example, model 70 includes 10 lags of daily RV, and 5 lags of daily RPV(1),
and has the form

log(RVt,h) = β0 + β1 log(RVt−1) + · · · + β10 log(RVt−10) + β11 log(RPVt−1(1))

+ · · · + β15 log(RPVt−5(1)) + βJJt−1 + ut,h, ut,h ! NID(0,σ2). (26)

In total there are 72 different specifications that enter the model averages.
When h > 1, we ensure that our predictions of log(RVt,h) are true out-of-sample fore-

casts. For instance, for (23) if we used data till time t for estimation, the last regressand
would be log (RVt−h+1,h), then the forecast is computed based on this information set for
E[log(RVt+1,h)|RVt, RVt−1, ...]. This is the predictive mean estimated following (3).

7 Results

We do Bayesian model comparison, and model averaging conditional on the following
uniformative proper priors: β ∼ N(0, 100I), and σ2 ∼ IG(0.001/2, 0.001/2). For the
linear models the first 100 Gibbs draws were discarded and the next 5000 were collected
for posterior inference. The output from the Gibbs sampler mixed well with a fast decaying
autocorrelation function.

There are K = 72 specifications (Table 3) that enter the model averages. In performing
Bayesian model averaging we follow Eklund and Karlsson (2007) and use predictive mea-
sures to combine individual models. We set the model probabilities to P (Mk) = 1/K, k =
1, ..., K at observation 500.13 Thereafter we update model probabilities according to Bayes
rule. The training sample of 500 observations only affects BMA and Section 7.3 shows
the results are robust to different sample sizes. The effect of the training sample is to
put more weight on recent model performance. As Eklund and Karlsson (2007) show this

12Preliminary work showed no evidence of an asymmetric effect in FX data.
13For example, using (9) we set P (Mk|Y500) ≡ 1/K for k = 1, ...,K and build up the model probabilities

as new data arrives.
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provides protection against in-sample overfitting and can improve forecast performance.
To compute the predictive likelihood from the end of the training sample to the last
in-sample observation we use the Chib (1995) method14, see the Appendix for details,
thereafter we update model probabilities period by period using (7) and (9).

The in-sample observations are 1000 for S&P 500, and 3000 for both JPY-USD and
DEM-USD. The out-of-sample period extends from March 16, 2001 to March 30, 2004
(761 observations) for S&P 500, May 13, 1998 to December 30, 2002 (1157 observations)
for JPY-USD, and May 15, 1998 to December 30, 2002 (1155 observations) for DEM-USD.

7.1 Bayesian Model Averaging

The predictive likelihood for BMA along with several benchmark alternatives is displayed
in the left panel of Table 4.15 Included are autoregressive models in log(RVt), the HAR-log
specification in (23), and a simple model average (SMA) which assumes equal weighting
across all models through time.

Beginning with the S&P 500, BMA is very competitive. When h = 1, the log predictive
likelihood is larger than all the benchmarks except for the AR(15) model, where BMA
and AR(15) have very close values. The evidence for h = 5 and h = 10 is stronger.
The log(PL) for the BMA is about 6 and 16 points larger than those from the best
benchmarks. We also find the SMA is dominated by many of the benchmarks, and it has
poor performance compared with BMA. The difference between these model averages is
that BMA weights models based on predictive content while the SMA ignores it.

For JPY-USD market the Bayesian model average outperforms all the benchmarks for
each time horizon. Compared to the HAR-log model used in Andersen, Bollerslev, and
Diebold (2007) the log predictive Bayes factor in favor of BMA is 10.0, 6.9, and 12.6 for
h = 1, 5, and 10, respectively. It also performs well for DEM-USD when h = 1. However
for h = 5, and h = 10 the BMA is second to the AR(15) model.

In summary, in 6 out of 9 cases BMA delivers the best performance in terms of density
forecasts, and when it is not the top model it is a close second.

7.2 Out-of-sample Point Forecasts

Although we focus on the predictive likelihood to measure predictive content, it is in-
teresting to consider the out-of-sample point forecasts of average log volatility based on
the predictive mean. Recent work by Hansen and Lunde (2006b) and Patton (2006)
has emphasized the importance of using a robust criterion, such as mean squared error,
to compare model forecasts against an imperfect volatility proxy like realized volatility.
Therefore, the right panel of Table 4 reports the root mean squared forecast error (RMSE).
The out-of-sample period corresponds exactly to the period used to calculate the predic-
tive likelihood. Forecast performance is listed for the same set of models as in previous

14For instance, using the notation in Section 2, the log predictive likelihood for y501, ..., yT , where yT is
the last in-sample observation, can be decomposed as log(p(YT ))− log(p(Y500)) and each term estimated
by Chib (1995).

15The full set of results for individual models is available upon request from the authors.
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section.
BMA performs well against the benchmarks. For S&P 500, BMA is better than all the

benchmarks for h = 5, and 10, and second best when h = 1. For JPY-USD, BMA is the
top performer. As with our previous results, BMA is weaker in the DEM-USD market.
In this case the SMA and the AR(15) perform well.

BMA is competitive for all data series and forecast horizons, although any improve-
ments it offers are modest.16 In 5 of the 9 cases BMA has the lowest RMSE.

7.3 Training Sample

The above results are based on model combination using predictive measures. As pre-
viously mentioned, we set the model probabilities to P (Mk) = 1/K, k = 1, ..., K at
observation 500, thereafter model probabilities are updated according to Bayes rule. This
training sample of 500 observations puts more weight on recent model performance and
less on past model performance. To investigate the robustness of BMA to the size of the
training sample, we calculate the results with different sample sizes as well as no training
sample. Results are summarized in Table 5 for DEM-USD with similar results for the
other data. Focusing on the predictive likelihood, we see that using more recent predictive
measures has some benefit for h = 10.

7.4 The Role of Power Variation

In this section we investigate why BMA performs well. One reason is that it weights
individual models based on past predictive content through the model probabilities. Over
time model performance changes and BMA responds to it. Another possibility is that the
specifications with power variation are better than existing models that only use RV.

To focus on this latter question we divide all the models that enter BMA into 3 groups
according to their regressors. These are the “RV only group” which includes all models
that have regressors constructed from only lag terms of log(RVt). The “RPV group”
includes all models in which at least 1 RPV regressor is used, and the “RBP group” is
all models that have RBP regressors. Table 6 reports the predictive likelihood of the best
models within each group for each of the forecast horizons h = 1, 5, and 10. The rank of
the model among the K = 72 alternatives is also displayed.

Including RPV terms can improve forecasting power. For S&P 500 when h = 1, if we
exclude RPV regressors, the best individual model has a log-predictive likelihood −527.0
with a rank of 2 out of the full 72 models. Among the models with RPV, the best one
has log(PL) of −526.0 and it is also the best model overall. For h = 5, including RPV

16The statistical importance of the relative RMSE values could be assessed based on a posterior pre-
dictive assessment (Gelman et al. (1996)). Using the posterior estimates for the model average based on
the full set of data the steps are: 1) a draw is taken from the model probabilities; 2) given this model,
a draw is taken from the respective posterior for the parameters; 3) using this parameter and model,
artificial log-realized-volatility data is generated. Each of the models and the BMA is estimated and
out-of-sample forecasts are produced using the generated data. This produces a RMSE for each model.
Repeating this many times provides a joint distribution of RMSE’s for all models which can be used to
assess the likelihood of observed results.
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increases log(PL) from −310.1 for the RV group to −302.2 (rank from 13 to 1). For
h = 10, the best RPV model achieves a −299.1 with rank 1, while the best RV model is
−316.8 with rank 38.

The results from JPY-USD market provide very similar supportive evidence for the
inclusion of RPV. In Panel B, the best models in the RPV group dominate those in the
RV only group across h with much higher predictive likelihood values (−835.6 vs −844.6
for h = 1, −648.0 vs −659.4 for h = 5 and −647.9 vs −661.5 for h = 10) and ranking
(1, 1, 1 compared with 40, 22 and 22 for h = 1, 5, 10). For DEM-USD data, when h = 1,
the best model is from the RPV group. When h = 5 and 10, the top specification has
only RV terms, however, the second best includes RPV.

In many cases models with RBP improve upon those with only RV. They increase log-
predictive likelihood for S&P 500 when h = 10, for JPY-USD across all forecast horizons,
and for DEM-USD when h = 1. However, the improvement is not as large as models with
RPV terms.

In summary, as a group, specifications with RPV regressors deliver forecast improve-
ments. Bipower variation delivers relatively smaller improvements over models with only
realized volatility regressors. However, specifications with RPV or RBP terms also display
considerable model uncertainty, but BMA gives them larger weights when they perform
well.

7.5 Model Risk

The message of this paper is that one should model average to reduce risk. Models that
perform well in one market and forecast horizon generally do not in other cases. In fact
they often perform poorly. Table 7 displays the differences in top models over markets and
forecast horizons. For instance, the top JPY-USD h = 5 model, which is labeled “HAR:
RV=3, PV(1)=2”, achieves log(PL) = −648.0. However, a rather different AR(15) in
realized volatility is the best model in DEM-USD, h = 5. In fact, the previous model
does relatively poorly with only log(PL) = −478.40, about 6 points worse than the
AR(15). This example also illustrates the need to have a wide range of different model
specifications, and not just the apparent top specifications that include realized power
variation.

7.6 BMA with GARCH Effects

Bollerslev et al. (2007) find evidence of GARCH dynamics in time-series models of log-
volatility. To investigate the importance of this for our results we consider the same set of
models but include a GARCH(1,1) specification for each model. The new class of models
extends those of Section 2.1 to

yt = Xt−1β +
√

htut, ut ∼ N(0, 1) (27)

ht = ω + a (yt−1 − Xt−2β)2 + bht−1. (28)
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Gibbs sampling is not readily available for this model.17 Instead, we adopt the random
walk Metropolis-Hastings algorithm following Vrontos et al. (2000). The details of es-
timation for this model and the predictive likelihood computation are presented in the
appendix.

Table 8 compares the out-of-sample log predictive likelihood for models with GARCH
errors for h = 1. All models that enter the model average have GARCH(1,1), including
the benchmark specifications. Compared with Table 4, the GARCH alternatives dominate
their homoskedastic counterparts. For example, the HAR-log-GARCH model improves
upon the HAR-log with increases in the log(PL) of 7.3 for S&P 500, 33.5 for JPY-USD,
and 34.8 for DEM-USD.

Consistent with our previous results, BMA provides overall good performance in ex-
tracting predictive content from the underlying models. For JPY and DEM data, it is
the top specification while it is a close second for the S&P 500. In summary, averaging
over a better class of models, BMA remains a useful approach to reduce model risk and
provide consistently good density forecasts.

8 Conclusion

This paper advocates a Bayesian model averaging approach to forecasting volatility. Re-
cent research provides a range of potential regressors. Model averaging reduces the risk
compared to selecting any one particular model. Bayesian model averaging, ranked by any
of the criteria studied in this paper, is the top performer, or very close to it. This occurs
over 3 different markets of realized volatility and 3 different forecast horizons. Density
forecasts show the most improvement while point forecasts show only modest gains over
existing benchmark models.

We find that Bayesian model averaging provides further improvements to density fore-
casts when we move away from linear models and average over specifications that allow for
GARCH effects. Other models that may be useful to average over include specifications
with nonlinear terms and fat-tailed innovations.

9 Appendix

9.1 Marginal Likelihood

In this appendix we review the estimation of the marginal likelihood following Chib (1995).
Denote the parameters θ = {β,σ2}. A rearrangement of Bayes rule gives the marginal
likelihood, ML(YT ), as

log ML (YT ) = log p
(
YT |β∗,σ2∗) + log p

(
β∗,σ2∗) − log p

(
β∗,σ2∗|YT

)
(29)

where p (YT |β∗,σ2∗) is the likelihood function, p (β∗,σ2∗) is the prior and p (β∗,σ2∗|YT ) is
the posterior ordinate, each evaluated at β∗,σ2∗ which we set to the posterior mean. The

17Bauwens and Lubrano (1998) use a Griddy Gibbs sampler for GARCH models. This involves a
numerical inversion of the conditional posterior densities.
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likelihood and prior are available and to compute the posterior ordinate note

p
(
β∗,σ2∗|YT

)
= p (β∗|YT ) p

(
σ2∗|YT , β∗) . (30)

The first term at the right hand side is,

p (β∗|YT ) =

∫
p
(
β∗|YT ,σ2

)
p
(
σ2|YT

)
dσ2 (31)

and can be estimated as ̂p (β∗|YT ) = 1
N

N∑
i=1

p
(
β∗|YT ,σ2(i)

)
, where the draws {σ2(i)}N

i=1 are

available directly from our Gibbs estimation step, and the conditional density p (σ2∗|YT , β∗)
is inverse-gamma as in Section 2.1 given β∗.

9.2 Estimation of Models with GARCH

We set all priors in the regression equation as before, they are independent normal
N (0, 100). The GARCH parameters have independent normal N (0, 100) truncated to
ω > 0, a ≥ 0, b ≥ 0, and a + b < 1. These priors are uninformative.

Denote all the parameters by Γ = {γ1, γ2, · · · , γL}. Since the conditional distributions
for some of the model parameters are unknown, Gibbs sampling is not available. Instead
we use a random walk Metropolis-Hastings algorithm. If we denote all the parameters
except for γl as Γ−l = {γ1, · · · , γl−1, γl+1, · · · , γL}, we sample a new γl given Γ−l fixed.
With Γ as the previous value of the chain we iterate on the following steps:

Step 1: Propose a new Γ
′
according to Γ

′
−l = Γ−l, with element l determined as

γ′
l = γl + el, el ∼ N(0, ξ2

l ). (32)

Step 2: Accept Γ
′
with probability

min

{
p(YT |Γ

′
)p(Γ

′
)

p(YT |Γ)p(Γ)
, 1

}

and otherwise reject. p(Γ) is the prior, and

log p (YT |Γ) =
T∑

t=1

[
−1

2
log(2π) − 1

2
log(ht) −

(yt − Xt−1β)2

2ht

]
(33)

where ht = ω + a(yt − Xt−1β)2 + bht−1.18 Each ξ2
l is selected to give an acceptance

frequency between 0.3–0.5. Running Step 1-2 above for all the parameters l = 1, · · · , L,
we obtain a new draw Γ which is one iteration. We perform 200,000 iterations and use
the last 100,000 for posterior inference.

For the marginal likelihood we use the method of Gelfand and Dey (1994) adapted by
Geweke (2005) (Section 8.2.4). This estimate is based on 1

N

∑N
i=1 g(Γ(i))/[p(YT |Γ(i))p(Γ(i))] →

p(YT )−1 as N → ∞, where p(YT |Γ) is the likelihood, and g(Γ(i)) is a truncated multivariate
Normal. Note that the prior, likelihood and g(Γ) must contain all integrating constants.
Finally, to avoid underflow/overflow we use logarithms in this calculation.

18To start up the conditional variance we set h0 = ω/(1 − a − b).
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Table 1: Summary Statistics for Measures of Volatility

S&P 500
Measures Mean Variance Min Max
r2 1.3136 11.8238 0.0000 67.8305
RV 1.6332 3.5078 0.0766 33.2162
RV 1 1.4429 3.2324 0.0714 30.7842
RV 2 1.3536 2.8899 0.0635 25.2236
RV 3 1.3076 2.8392 0.0572 26.3249

JPY-USD
Mean Variance Min Max

r2 0.5253 2.0089 0.0000 52.9709
RV 0.6160 0.5963 0.0316 32.5053
RV 1 0.5801 0.7541 0.0244 39.7883
RV 2 0.5622 0.8262 0.0212 42.9220
RV 3 0.5491 0.8473 0.0184 43.6814

DEM-USD
Mean Variance Min Max

r2 0.4744 0.8366 0.0000 12.4406
RV 0.5645 0.3157 0.0347 15.3277
RV 1 0.5298 0.3234 0.0341 14.9701
RV 2 0.5122 0.3270 0.0297 14.9052
RV 3 0.4987 0.3244 0.0280 14.8933

S&P 500 data is from February 6, 1997 to March 30, 2004 (1796 observations).
JPY-USD data, February 3, 1986 to December 30, 2002 (4192 observations).
DEM-USD data, February 3, 1986 to December 30, 2002 (4190 observations).
r2 is the daily squared return, RV is unadjusted realized volatility, RV 1, RV 2

and RV 3 are adjusted RV q for q=1,2 and 3 following equation (21).
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Table 2: Model Comparison Using Different Volatility Predictors for FX Volatility

JPY-USD
Regressors

RV RPV (1) RBP Range Squared Return

log(PL) -845.32 -845.12 -856.87 -863.47 -997.31
RMSE 0.4918 0.4864 0.4949 0.5025 0.5620
MAE 0.3659 0.3601 0.3684 0.3851 0.4285
R2 0.5419 0.5594 0.5498 0.5193 0.4141

DEM-USD
Regressors

RV RPV (1.5) RBP Range Squared Return

log(PL) -754.71 -752.04 -748.06 -765.03 -872.84
RMSE 0.4467 0.4450 0.4437 0.4521 0.4937
MAE 0.3346 0.3374 0.3311 0.3889 0.3729
R2 0.3954 0.3988 0.3997 0.3996 0.3085

This table compares the out-of-sample forecasting power of different regressors
using JPY-USD and DEM-USD data. The out-of-sample period is May 13, 1998
to December 30, 2002 (1157 observations) for JPY-USD, and May 15, 1998 to
December 30, 2002 (1155 observations) for DEM-USD. The common model is a
HAR-log

log(RVt) = β0+β1 log(Vt−1,1)+β2 log(Vt−5,5)+β3 log(Vt−22,22)+ut, ut ∼ N(0,σ2),

where Vt,h = 1
h

∑h
i=1 Wt+i−1. For the JPY-USD column 2 sets Wt−1 = RVt−1,

column 3 Wt−1 = RPVt−1(1), column 4 Wt−1 = RBPt−1, column 5 Wt−1 =
ranget−1 = log(PH,t−1/PL,t−1), and column 6 Wt−1 = r2

t−1, the daily squared
return. It is identical for the DEM-USD except that column 3 sets Wt−1 =
RPVt−1(1.5). PH,t−1 and PL,t−1 are the intraday high and low price levels on
day t − 1. For the out-of-sample period we report the log predictive likelihood
(PL), root mean square error (RMSE) and mean absolute error (MAE) for the
predictive mean, and the R2 from a forecast regression of realized volatility on a
constant and the predictive mean.
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Table 3: Model Specifications
HAR-type AR-type

Model RV RPV(.5) RPV(1) RPV(1.5) RBP Model RV RPV(.5) RPV(1) RPV(1.5) RBP
1 3 0 0 0 0 42 5 0 0 0 0
2 0 3 0 0 0 43 0 5 0 0 0
3 0 0 3 0 0 44 0 0 5 0 0
4 0 0 0 3 0 45 0 0 0 5 0
5 0 0 0 0 3 46 0 0 0 0 5
6 1 1 0 0 0 47 10 0 0 0 0
7 1 2 0 0 0 48 0 10 0 0 0
8 1 3 0 0 0 49 0 0 10 0 0
9 1 0 1 0 0 50 0 0 0 10 0
10 1 0 2 0 0 51 0 0 0 0 10
11 1 0 3 0 0 52 15 0 0 0 0
12 1 0 0 1 0 53 0 15 0 0 0
13 1 0 0 2 0 54 0 0 15 0 0
14 1 0 0 3 0 55 0 0 0 15 0
15 1 0 0 0 1 56 0 0 0 0 15
16 1 0 0 0 2 57 5 1 0 0 0
17 1 0 0 0 3 58 5 0 1 0 0
18 2 1 0 0 0 59 5 0 0 1 0
19 2 2 0 0 0 60 5 0 0 0 1
20 2 3 0 0 0 61 5 5 0 0 0
21 2 0 1 0 0 62 5 0 5 0 0
22 2 0 2 0 0 63 5 0 0 5 0
23 2 0 3 0 0 64 5 0 0 0 5
24 2 0 0 1 0 65 10 1 0 0 0
25 2 0 0 2 0 66 10 0 1 0 0
26 2 0 0 3 0 67 10 0 0 1 0
27 2 0 0 0 1 68 10 0 0 0 1
28 2 0 0 0 2 69 10 5 0 0 0
29 2 0 0 0 3 70 10 0 5 0 0
30 3 1 0 0 0 71 10 0 0 5 0
31 3 2 0 0 0 72 10 0 0 0 5
32 3 3 0 0 0
33 3 0 1 0 0
34 3 0 2 0 0
35 3 0 3 0 0
36 3 0 0 1 0
37 3 0 0 2 0
38 3 0 0 3 0
39 3 0 0 0 1
40 3 0 0 0 2
41 3 0 0 0 3

The first panel displays HAR-type model configurations. A 1 indicates a daily factor (e.g. log(RPVt−1,1(1))) a
2 means a daily and weekly factor (e.g. log(RPVt−1,1(1)), log(RPVt−5,5(1))) and a 3 means a daily, weekly and
monthly factor (e.g. log(RPVt−1,1(1)), log(RPVt−5,5(1)), log(RPVt−22,22(1))) using the respective regressor in
that column. The second panel is for AR-type models. Each row lists the number of lagged regressors from the
respective column. All specifications include a jump term and the S&P 500 has a leverage term.



Table 4: Out-of-Sample Forecasts, log(RVt,h)

A: S&P 500
log(PL) RMSE

Model h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
AR(5) -535.9 -332.0 -341.2 0.4865 0.3652 0.3757
AR(10) -529.1 -316.0 -320.2 0.4819 0.3564 0.3635
AR(15) -527.0 -310.1 -316.8 0.4803 0.3523 0.3610
HAR-log -534.4 -320.2 -331.7 0.4855 0.3595 0.3715

SMA -537.0 -319.0 -317.5 0.4862 0.3545 0.3597
BMA -527.7 -304.4 -300.7 0.4808 0.3518 0.3545

B: JPY-USD
log(PL) RMSE

Model h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
AR(5) -847.6 -675.4 -693.2 0.4955 0.4293 0.4429
AR(10) -844.6 -666.4 -675.2 0.4943 0.4257 0.4355
AR(15) -845.6 -661.0 -664.3 0.4947 0.4232 0.4311
HAR-log -846.6 -659.4 -661.5 0.4950 0.4224 0.4303

SMA -838.1 -663.8 -671.5 0.4904 0.4220 0.4324
BMA -836.6 -652.5 -648.9 0.4899 0.4198 0.4258

C: DEM-USD
log(PL) RMSE

Model h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
AR(5) -749.7 -493.3 -422.0 0.4456 0.3565 0.3345
AR(10) -745.6 -476.3 -400.0 0.4447 0.3514 0.3275
AR(15) -743.4 -472.1 -394.5 0.4436 0.3497 0.3253
HAR-log -748.9 -483.6 -410.2 0.4455 0.3535 0.3307

SMA -750.6 -494.5 -422.5 0.4415 0.3514 0.3287
BMA -742.1 -475.0 -397.7 0.4423 0.3514 0.3279

This table reports the out-of-sample log predictive likelihood (log(PL)), and the out-of-sample root
mean square forecast error (RMSE) for the predictive mean. The results are for Bayesian Model
Averaging (BMA), a simple equally-weighted model average (SMA), a HAR-log model (23) and
several AR benchmarks using log(RVt). The out-of-sample period is from March 16, 2001 to March
30, 2004 (761 observations) for S&P 500, May 13, 1998 to December 30, 2002 (1157 observations)
for JPY-USD, and May 15, 1998 to December 30, 2002 (1155 observations), for DEM-USD.
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Table 5: Robustness to Training Sample Size, DEM-USD

h=1 h=5 h=10
Obs log(PL) RMSE log(PL) RMSE log(PL) RMSE
0 -743.1 0.4426 -476.9 0.3514 -407.5 0.3308

200 -741.5 0.4419 -475.3 0.3515 -397.7 0.3279
500 -742.1 0.4423 -475.0 0.3514 -397.7 0.3279
1000 -742.4 0.4424 -474.3 0.3511 -397.4 0.3282

The first column is the number of observations in the training sample. A 0 denotes no
training sample. Other columns show the results for BMA, including log predictive likelihood
(PL) and root mean squared forecast error (RMSE).

Table 6: The Best Models with Different Regressors

A: S&P 500
h = 1 h = 5 h = 10

Regressors log(PL) Rank log(PL) Rank log(PL) Rank

RV only -527.0 2 -310.1 13 -316.8 38
With RPV -526.0 1 -302.2 1 -299.1 1
With RBP -527.9 4 -310.2 14 -310.5 18

B: JPY-USD
h = 1 h = 5 h = 10

Regressors log(PL) Rank log(PL) Rank log(PL) Rank

RV only -844.6 40 -659.4 22 -661.5 22
With RPV -835.6 1 -648.0 1 -647.9 1
With RBP -840.1 17 -653.0 11 -654.4 13

C: DEM-USD
h = 1 h = 5 h = 10

Regressors log(PL) Rank log(PL) Rank log(PL) Rank

RV only -743.4 18 -472.1 1 -394.5 1
With RPV -704.3 1 -475.3 2 -397.7 2
With RBP -741.0 4 -476.1 4 -400.2 5

This table reports the best model among a specific set of regressors. “RV only” is the best model
with regressors constructed from only lags of RV terms. “With RPV” row reports the best model
which includes RPV in the regressors and “with RBP” is the best model with RBP terms. The
candidate models are summarized in Table 3.
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Table 8: Predictive Likelihoods for GARCH Models, h = 1

Model S&P 500 JPY-USD DEM-USD
AR(5) -530.0 -815.7 -717.3
AR(10) -523.3 -814.9 -715.7
AR(15) -521.1 -815.4 -712.9
HAR-log -527.1 -813.1 -714.1

BMA -522.8 -808.9 -706.4
This table reports the out-of-sample log predictive likelihood (log(PL)) for models with GARCH.
The results are for Bayesian Model Averaging (BMA), a HAR-log model (23) and several AR
benchmarks using log(RVt). All models include GARCH effects. The out-of-sample period is
from March 16, 2001 to March 30, 2004 (761 observations) for S&P 500, May 13, 1998 to Decem-
ber 30, 2002 (1157 observations) for JPY-USD, and May 15, 1998 to December 30, 2002 (1155
observations), for DEM-USD.
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Figure 1: Time Series of Daily Adjusted Log-Realized Volatility
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Figure 2: Autocorrelation Functions of Volatility Measures for JPY-USD
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Figure 3: Correlation Function between volatility measures for JPY-USD
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This figure displays estimates of corr(log(RVt), log(RPVt−i(p))) as a function of p for differ-
ent lag lengths i = 1, 5, 10, 20.
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