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"Financial science too can boast about very high explanatory power if the phe-

nomenon is artfully selected. For instance, the daily change in an option’s price can

be accurately "predicted" by the concurrent change in the associated stock price."

Richard Roll, R2, Journal of Finance XLIII, page 541.

1 Introduction

Empirical tests of option pricing models usually consist in contrasting theoretical and

market prices of options. An alternative line of attack is to test properties that should

hold for all models based on a given stochastic process for the underlying asset (see

Aït-Sahalia, 2002, Carr andWu, 2003). Following this approach, we test the empirical

validity of the monotonicity property, or homogeneity property, for option prices. This

property states that the price of a call option is a monotonically increasing function of

the value of its underlying asset, and that the price of a put option is a monotonically

decreasing function of the value of its underlying asset.1 It is shared by all option

pricing models assuming that the underlying asset price follows a one-dimensional

diffusion process, such as the models of Black and Scholes (1973), Merton (1973),

Cox and Ross (1976), Derman and Kani (1994), and Rubinstein (1994), as well as

in certain restricted stochastic volatility settings (see Bergman, Grundy and Wiener,

1996).

Using a six-month sample of S&P 500 options quotes, Bakshi, Cao and Chen

(2000) show that the sign of option price changes differs quite often from that im-

plied by the monotonicity property. That is, call option prices move in the opposite

direction with the underlying asset between 7% and 16% of the time, and put option

prices and index value move in the same direction between 5% and 16% of the time,

depending on the intra-day sampling interval.2 They interpret these results as evi-

dence that option prices are not generated by a univariate diffusion model. Thus, they

1The monotonicity property is not one of the model-free arbitrage conditions that have to be
respected in arbitrage-free option markets, such as upper or lower bounds for option prices (see
Smith, 1976, and Hull, 2006).

2Bakshi, Cao and Chen (2000) show that their conclusions remain valid after controlling for
moneyness, maturity, time-decay, bid-ask spread, trading volume, number of quotes revisions, and
time of day.
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argue that option pricing models should allow more than one state variable to evolve

stochastically. On the contrary, Dennis and Mayhew (2005) claim that, when option

prices are observed with noise, a significant portion of the reported violations may

be caused by microstructural biases, which are due, for instance, to bid-ask spreads

or tick sizes.

In this paper, we endeavor to test empirically the validity of the two main ar-

guments (i.e., concurrent change in volatility and microstructural bias) explaining

the frequent deviations from the monotonicity property. Furthermore, we investigate

whether the violations of the monotonicity property arise from rational trading tac-

tics followed by option traders. To provide a comprehensive analysis of this issue, we

study all transaction prices from 2002 for five option contracts written on the Euro-

pean, French, German, Swiss, and British stock indices. These options have several

interesting features: they are traded on different exchanges, under different trading

mechanisms, and they vary greatly in terms of trading activity and liquidity.

Since the monotonicity property is defined as a partial derivative, it cannot directly

be tested using a time-series of option prices and underlying asset values. For this

reason, we define an empirically testable version of the monotonicity property stating

that the price of a call option and the value of its underlying asset move in the same

direction, and that the price of a put option and the value of its underlying asset

move in opposite directions.

Our testing procedure of the monotonicity property differs from the one in Bakshi,

Cao and Chen (2000) in several respects. We conduct our empirical analysis using

observed transaction prices instead of average bid-ask quotes. While more cumber-

some to deal with, transaction prices allow us to control explicitly for the impact of

microstructure effects on our conclusions. Following Bakshi, Cao and Chen (2000),

Fahlenbrach and Sandas (2005) study co-movements in the index options and fu-

tures quotes on the British derivatives market. They show that the violations of the

monotonicity property are much more frequent around trades than during periods

without any trades. Furthermore, our international dataset allows us to test the

empirical validity of the monotonicity property across derivative markets.

Our empirical analysis leads to the following conclusions. We show that, depend-

ing on the sampling interval (from tick-by-tick price changes to daily price changes)
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and the option contract considered, call option prices move in opposite directions

with the underlying asset between 7% and 32% of the time. Similarly for put option

prices, the associated violation rates range from 6% to 35%. Overall, the occurrence

rates generally decrease with the length of the time-interval considered and with the

trading activity of the option contract. These empirical results may be helpful to

determine the optimal rebalancing frequency of hedging strategies in option markets.

We then investigate the causes of the frequent violations of the monotonicity

property. Our findings suggest that part of the violations are due to concurrent

changes in volatility. We also consider the microstructure aspects of the markets that

are generating the prices. Controlling explicitly for the direction of option trades,

i.e., seller-initiated or buyer-initiated trade, we uncover evidence that a substantial

portion of the reported violations of the monotonicity property are attributable to the

bid-ask bounce. Furthermore, we show that violations of the monotonicity property

can result from rational trading tactics followed by traders in a market with relatively

limited liquidity.

The remainder of the paper proceeds as follows. Section 2 describes the testing

procedure, section 3 presents the dataset and the empirical results, while section 4

offers a summary and concluding comments.

2 Empirical Monotonicity Property: Definitions
and Violations

The monotonicity property asserts that the price of a call option C is a monotonically

increasing function of the value of its underlying asset S, and that the price of a put

option P is a monotonically decreasing function of the value of its underlying asset.

That is, the partial derivative of the call option price with respect to the value of

the underlying asset is non-negative, CS > 0, and the partial derivative of the put

option price with respect to the value of the underlying asset is non-positive, PS 6 0.
Since this property is defined as a partial derivative, it cannot directly be tested using

a time-series of option prices and underlying asset values. Therefore, we define the

following empirically testable version of the monotonicity property for call and put

options.
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Definition 1 For a given call option and its underlying asset, the empirical monotonic-
ity property is satisfied over a given time interval if the change in the call option price

∆C and the change in the underlying asset value ∆S have the same sign.

Definition 2 For a given put option and its underlying asset, the empirical monotonic-
ity property is satisfied over a given time interval if the change in the put option price

∆P and the change in the underlying asset value ∆S have opposite signs.

An equivalent formulation is that, over a given time interval, the price of a call

option and the value of its underlying asset move in the same direction, and that the

price of a put option and the value of its underlying asset move in opposite directions.

Thus, if the empirical monotonicity property (hereafter EMP) is satisfied between any

two points in time, the empirical delta of a call option∆C/∆S is always non-negative

and the empirical delta of a put option ∆P/∆S is always non-positive.

Intuitively, the EMP makes a lot of sense. Indeed, as option and underlying asset

prices are affected by the same news at the same time, they should conform to this

property. Note that this property should also hold when option returns lead cash

returns, as reported by Manaster and Rendleman (1982) and Bhattacharya (1987),

or when cash returns lead option return, as claimed by Stephan and Whaley (1990).

This is true as long as the sampling interval used to measure the price changes is

longer than the estimated lead.

Formally, if the option is assumed to be a function of the underlying asset price

and time, we have by Ito’s lemma:

dC = Ctdt+ CSdS +
1

2
CSS(dS)

2 (1)

dP = Ptdt+ PSdS +
1

2
PSS(dS)

2. (2)

When in addition S is assumed to depend on a single standard Brownian motion

W (t), so that:
dS(t)

S(t)
= α(St, t)dt+ σ(St, t)dW (t) (3)

then (dS)2 = σ2S2dt in Equ. (1) and (2). Since under rather general conditions,

CS > 0 (see Bergman, Grundy and Wiener, 1996), the EMP is respected if (Ct +
1
2
CSSσ

2S2)dt is negligible. Analogously, the property is valid for a put option as long
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as (Pt+
1
2
PSSσ

2S2)dt is negligible. Although the theory does not claim that the EMP

should be satisfied for any arbitrary time interval, this property is likely to hold over

small time intervals.

Using a dataset of option and underlying-asset prices, it is relatively simple to

assess the validity of the EMP by counting the number of occurrences when ∆C

and ∆S do not have the same sign or when ∆P and ∆S do have the same sign.

Specifically, two types of violations can be derived for call options and two others can

be derived for put options.

Violations for Call Options

Type I: ∆S < 0, ∆C > 0

Type II: ∆S > 0, ∆C < 0

Violations for Put Options

Type I: ∆S > 0, ∆P > 0

Type II: ∆S < 0, ∆P < 0

Both violations I and II imply that the empirical delta of a given option does

not display the expected sign.3 We study the signs of contemporaneous option price

and index value changes instead of the sign of their product. This separate analysis

permits us to compare the magnitude and the frequency of the deviations from the

EMP in an up or a down movement in the underlying asset value. This partition turns

out to be central to studying the implications of our results for hedging practices.

Indeed, a delta-hedged position combining a long position in one call option with

an appropriate short position in the underlying asset generates a gain on both the

derivative position and underlying position when a violation I occurs (∆S < 0, ∆C >

0). In contrast, this hedged position faces a double loss when a violation II arises

(∆S > 0, ∆C < 0). Analogously, a short-call delta-hedged position suffers from

violations I but benefits from violations II.

3Note that a situation where either the option price or the stock index remains constant over
the sampling interval is not considered as a violation. This alleviates the bias introduced by the
minimum tick size. In particular, we do not record a spurious violation when the "true" option price
changes by less than one tick size, and then the observed option price remains constant.
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3 Empirical Analysis

3.1 Data

We analyze the price dynamics of five index options written on the European (DJ

EURO STOXX-50), French (CAC-40), German (DAX), Swiss (SMI), and British

(FTSE-100) stock indices.4 These contracts are European-style options and are

traded on three leading derivatives exchanges, namely EUREX, EURONEXT, and

LIFFE.5 We get for each of the five contracts all transaction prices from 2002, which

represent a total of almost 1.4 million observations of call and put option prices and

more than 173 million contracts traded. The sources for the option data are the

Deutsche Börse Group for the options on the European, German and Swiss indices,

EURONEXT for the options on the French index, and LIFFE for options on the

British index. Additional information on the index options, such as tick size, number

of series, and ticker symbols, are presented in Table 1. Our dataset also includes the

intra-day value of the underlying stock indices observed every 15 seconds for the DAX

and every 60 seconds for other indices, with a total number of observations exceeding

1.2 million. Intra-day cash indices have been obtained from Olsen data, except for

the DAX data that have been provided by the Karlsruhe University, Germany.

< INSERT TABLE 1 >

EUREX, EURONEXT, and LIFFE all offer fully electronic trading platforms.

There are several differences in the market models used on these three exchanges

that are worthwhile mentioning. On EUREX, there are market-makers obliged to

4The DJ EURO STOXX-50 is an index of 50 European blue chip stocks compiled by Dow Jones.
The CAC-40 index comprises 40 of the largest cap companies listed in France. The DAX index is
based on 30 large stocks trading on the German exchange. The SMI index is made up of the 30
largest companies trading in Switzerland. The FTSE-100 index is a portfolio of 100 large companies
listed on the London Stock Exchange. Besides the DAX index, which is a total return index, all
indices are price indices, i.e., dividends are not assumed to be reinvested.

5EUREX, the world’s leading derivatives exchange (in terms of number of contracts traded), is
jointly operated by Deutsche Börse AG and SWX Swiss Exchange. It closed out 2002 with over
800 million contracts traded, and broke the one billion contract barrier in 2003 (source: EUREX).
EURONEXT was created in 2000 after the merger of the Amsterdam, Brussels, and Paris stock and
derivatives exchanges. EURONEXT took control of the London International Financial Futures
and Option Exchange (LIFFE) in 2001 and migrated part of its operations during the first half of
2003 onto the LIFFE, making EURONEXT.LIFFE the world’s second largest derivatives exchange
(again, in terms of number of contracts traded).
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promptly supply bid and ask quotes for any options. Furthermore, all orders entered

into the EUREX system are assigned a time stamp that is used to prioritize orders

with the same price. Market orders have the highest priority for matching. In the

case of limit orders, orders with the best possible prices (i.e., highest price limit for

buy orders and lowest price limit for sell orders) take precedence in the matching

process. If the limit orders have the same price limit, the extra criterion used for

establishing matching priority is the order time-stamp. When a given order is not

completely executed, the unexecuted part of the order remains in the order book

until it is totally executed.6 On EURONEXT, there are designated market makers

for actively traded derivatives, including the CAC 40 index options. Consistent with

the matching rule on EUREX, the central order book applies a price-time trading

algorithm. In contrast, there are no designated market makers on LIFFE with special

quoting obligations in the FTSE-100 index option market.7 Traders submit orders

electronically to a central order book in which orders are prioritized for execution on

the basis of price. Orders at the same price are filled in a pro rata fashion according

to order size.

A notable feature of our dataset is the use of transaction prices instead of bid-ask

midpoint prices. Transaction prices are less subject to bid-ask spread manipulations

than bid-ask midpoint prices. Indeed, spread manipulations by market-makers can

potentially create average-price based violations even in absence of any trading ac-

tivity. Moreover, transaction prices can be used to measure actual violations while

arbitrarily-sampled bid-ask midpoints only allow to measure potential violations. On

the other hand, bid-ask bounce can critically affect our conclusions and it will be

properly accounted for further down.

We apply four exclusion filters to the original option data. First, options with

less than six days to expiration are omitted to alleviate expiration-related bias. Sec-

ond, we eliminate options with a Black-Scholes implied volatility greater than 100%.8

6An exception is a limit order with a "Fill-or-Kill" feature.
7Beginning in 2005, a new designated market maker scheme is operating in the European-style

FTSE 100 index option contract.
8To compute the implied volatility, we interpolate on a daily basis a risk-free rate with maturity

matching that of the option from the term structure of the interbank offered rates for Euros, British
Pounds and Swiss Francs, obtained from DATASTREAM. We assume that the dividends are known
over the life of the option and replace q by the annualized average realized dividend rate. We obtain
daily dividend rates on the stock indices from DATASTREAM. Since the DAX index is a total
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Third, options with transaction price strictly below two tick sizes are not used in

our analysis to mitigate the impact of price-discreteness related bias. Fourth, option

series with less than ten trades during a given day are dropped from the day’s sample.

For all option contracts, transaction times are in year-month-day-hour-minute-second

format. Once each transaction time has been converted in seconds, we match every

option price with the index value observed at the closest point in time. Since the

DAX index is observed every 15 seconds, the present matching process limits the

time discrepancy between option prices and index values to 7 seconds. For the same

reason, the maximum time discrepancy cannot exceed 30 seconds for the other four

contracts, which limits the impact of imperfect synchronization between option prices

and index values.

We divide the option data into several categories according to either moneyness

or time-to-expiration. A call option is said to be in-the-money (ITM) if its money-

ness S/X > 1.03; at-the-money (ATM) if S/X ∈ (0.97, 1.03); and out-of-the-money
(OTM) if S/X 6 0.97. Similar partition is obtained for put options by replacing

S/X with X/S. Moreover, an option contract is classified as short-term if its time-

to-expiration measured in calendar days τ 6 30 days to maturity; medium-term if

τ ∈ (30, 60); and long-term if τ > 60. Table 2 describes certain sample properties

of the option data used in this study. Summary statistics are reported for the aver-

age transaction price and the number of observations for each moneyness-maturity

category. Not surprisingly, we note that short-term options tend to be more actively

traded than medium-term and long-term options, and for each contract, OTM options

have the highest trading volume.

< INSERT TABLE 2 >

3.2 Price Change Measurement

Our testing procedure requires the calculation of contemporaneous price changes for

the options and the underlying assets. Since we use transaction prices, which are

unequally-spaced, we compute for each option contract and its underlying asset both

(1) tick-by-tick price changes and (2) price changes over a fixed sampling interval.

While for tick-by-tick price changes, the time interval between two trades, f∆t, is

return index, we do not account for the dividend yield.
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random, for fixed sampling interval price changes, the time between two trades, ∆t,

is enforced to be 30 minutes, 1 hour, 2 hours, 3 hours, and 1 day.9 The procedure

yielding price changes for both random and fixed ∆t is illustrated in Figure 1 and

proceeds as follows. For ease of presentation, we consider five trades, denoted trades

A, B, C, D, and E, that take place at times tA, tB, tC, tD, and tE, respectively. For this

sample, four tick-by-tick price changes can straightforwardly be computed (between

tA and tB, tB and tC, tC and tD, and tD and tE) but only two ∆t-price changes can

be obtained (between tA and tC, and tB and tD). A ∆t-price change is obtained by

starting from a given trade, say trade A, adding ∆t to tA, and considering a ∆t/2

window around tA +∆t. The fixed-interval price changes is computed between the

price at time tA and the price at the closest trade to tA +∆t, with the constraint to

remain within the ∆t/2 window.10 This procedure guarantees that ∆t-price changes

are computed from trades spaced about ∆t apart. For instance, it guarantees that 30

minute-price changes are only computed from prices spaced by at least 22.5 minutes

but not more than 37.5 minutes. The total number of option price changes resulting

from this procedure is 3,187,059 for the five option contracts, among which 752,360

are tick-by-tick price changes.

< INSERT FIGURE 1 >

3.3 Violation Rates

Table 3 reports the occurrence frequencies of violations I and II for each of the five

option contracts. Our main empirical findings are as follows. Firstly, the violation

rates for tick-by-tick price changes are substantial, i.e., call option prices go up and

index value goes down between 6.1% for DAX options and 13.9% for CAC options

of the time (Type I: ∆S < 0, ∆C > 0). Similarly, call option prices go down and

index value goes up between 6.4% for DAX options and 14.2% from CAC options of

the time (Type II: ∆S > 0, ∆C < 0). Thus, at the tick-by-tick frequency, call option

prices move in opposite direction with the underlying asset between 12.5% and 28.1%

of the time. Secondly, violations II are more frequent than violations I, which means

that EMP-violating option price drops are more frequent than EMP-violating option

price rises. Thirdly, while for fixed time-intervals both occurrence rates are globally

9The use of small time intervals mitigates the impact of time decay on option prices.
10For the 1-day sampling interval, we use a ∆t/6 window (4 hours) instead.
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decreasing with the length of the time-interval considered, the drop is much more

pronounced for violations I. In particular for one-day price changes, type-I violation

rates are typically below 3% but type-II violation rates remain in the 6%-10% range.

Fourthly, the most actively traded contract in our sample, i.e., DAX options, exhibits

lower violations rates. Finally, when put option prices are used in place of call option

prices, a rather similar picture emerges for all five contracts.

The sum of violations I and II gives the frequency with which the empirical delta

of a given option (∆C/∆S or ∆P/∆S) does not display the expected sign. This

simple transformation allows us to compare our results for fixed sampling intervals

with the ones obtained by Bakshi, Cao and Chen (2000) using S&P 500 options (see

their Table 3, Column "Type I"). We see in Table 3 that the violation rates obtained

for DAX and FTSE options are smaller than the ones reported for S&P 500 options.

However, the EMP is more strongly violated by options written on the European,

French, and Swiss stock indices.

< INSERT TABLE 3 >

Table 4 allows us to take a more detailed look at the violation rates across money-

ness and maturities. The table successively reports occurrence frequencies for OTM,

ATM, ITM, short-term, medium-term, and long-term options. In the interest of

brevity, we only present the results for tick-by-tick price changes. We find compa-

rable occurrence rates across option categories, which indicates that deviations from

the EMP are not limited to a special class of options but seem to be a market-wide

phenomenon.

< INSERT TABLE 4 >

To get an idea of the magnitude of a typical price change in a violation, we report

in Table 5 the average absolute option price change (expressed as a percentage of

option prices) when a violation occurs. Not surprisingly, the average price change

increases with the sampling interval, ranging for instance between 2% and 7% with a

tick-by-tick frequency and between 4% and 14% with a daily frequency. We cannot
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exclude that the average price change remains within the typical bid-ask spread for

all five contracts, and especially for short time intervals. Indeed, using a sample that

overlaps with ours (FTSE-100 options, August 2001 - July 2002), Fahlenbrach and

Sandas (2005) find that the average bid-ask spread is between 5.0 and 8.9% for ATM

options, between 11.8 and 28.2% for OTM options, 29.7% for short-term options,

11.2% for medium-term options, and 8.0% for long term options. On EURONEXT,

Sahut (1998) show that the bid-ask spread range from 7.1% to 19.5%. Finally, on

EUREX, average spreads are in the 4-6% range (see Bartram and Fehle, 2006 for

details). These figures suggest that the frequent violations of the EMP reported

above are due, for a large part, to the bid-ask bounce.

< INSERT TABLE 5 >

3.4 Causes of the Violations

3.4.1 Are Violations Caused by Changes in Other Underlying Variables?

According to option pricing theory, violations of the EMP can be due to simultaneous

changes in the value of other variables affecting option prices. For instance, it is well

known that the value of an option increases with the volatility of the underlying asset

or that the time value of a given option gradually decreases through time. We know

that the value of an option V depends on several underlying variables, namely, the

current value of the underlying asset S, the volatility of the underlying asset σ, time

t, the strike price K, the dividend rate q, and the risk-free interest rate r:

V = V (S, σ, t,K, q, r). (4)

Using the denomination of each rate of change of the option price with respect to the

underlying variables, i.e., the Greeks, the change in the value of the option can be

rewritten as:

∆V = Delta ·∆S + V ega ·∆σ + Theta ·∆t+Diva ·∆q +Rho ·∆r

+
1

2
Gamma · (∆S)2 + ... (5)

We clearly see in Equ. (5) that when one analyzes the empirical relationship between

∆V and ∆S, the influence of the other underlying variables is neglected. In the
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following, we focus on volatility shocks and restrict the previous equation as follows:11

∆V ' Delta ·∆S + V ega ·∆σ. (6)

Controlling for shocks in the volatility of the underlying asset is of primary impor-

tance. Indeed, a violation I may be caused by a sudden spike in the level of the

expected annualized volatility over the remaining life of the option. Moreover, in a

simulation experiment, Bakshi, Cao and Chen (2000) show that option prices gen-

erated according to a stochastic volatility model violate the EMP as frequently as

actual option prices.

When attempting to account for intra-day changes in volatility, we invariably face

the problem that volatility cannot be readily observable. To overcome this problem,

we simply claim that if a violation I (∆S < 0, ∆C > 0) is triggered by a sudden rise

in volatility (∆σ > 0), this volatility shock should also affect other options written

on the same underlying asset. Specifically, the likelihood of having a violation on call

option i (∆S < 0, ∆Ci > 0) should be positively affected by the fact that there is a

concurrent violation on call option j (∆S < 0, ∆Cj > 0), where calls i and j have

the same underlying asset, the same expiration date, but different strike prices.

To test the latter hypothesis, we apply the following matching procedure. For each

call option price change ∆Ci measured over ∆ti, we identify another call option price

change ∆Cj measured over ∆tj, that maximizes the overlap between the two time

intervals ∆ti and ∆tj. If the overlap of the best pair of price changes does not exceed

90%, we drop this particular ∆Ci from the sample. By applying this matching rule to

all 30 minute, 1, 2, and 3 hour call option price changes, we end up with 673,100 valid

matchings, which corresponds to approximately one third of the original sample.

We compute the total number of type I and II violations for all matching obser-

vations ∆Cj knowing that ∆Ci have (1) a violation I, (2) a violation II, or (3) no

violations. Empirical results are presented in Table 6.12 The first column of the table

11We reject the idea that time decay can have any measurable impact over the short time intervals
used in this study. We do not either account for changes in the risk-free interest rate r and in the
dividend rate q since the effect on option prices of changes in r or q has been shown to be relatively
small (see among others Bakshi, Cao, and Chen, 1997, and Jarrow and Turnbull, 2000, p. 278) and
that ∆r and ∆q cannot be measured with a sufficient precision over very small time-intervals. We
also neglect the Gamma effect as it is often treated as a second-order effect in the literature.
12We obtain similar results with put options but do not report results to save space.
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shows that this sample yields the same violation rates as in Table 3. For instance, out

of the 17,128 price changes for options on the European index, we find 1,732 type I

violations, or 10.1%. Turning to the matching sample, we record a very large number

of type I violations, i.e., 1,086 out of 1,732. This result suggests that violations tend

to occur in bunches: they concurrently affect options written on the same underlying

asset. A similar pattern arises with type II violations. Furthermore, similar clustering

effects can be seen for the other four contracts. This empirical evidence supports the

claim in Bakshi, Cao and Chen (2000) that violations of the EMP are mainly due to

volatility shocks. Although these clusters of violations of the EMP are consistent with

the volatility story, they may also reflect the microstructure of the option market.

In the next two subsections, we will take different angles to study the role of market

microstructure.

< INSERT TABLE 6 >

3.4.2 Are Violations Caused by the Bid-Ask Bounce?

We question whether deviations from the EMP are caused by the bid-ask bounce.

Indeed, even when both bid and ask prices stay constant, a violation I (∆S < 0,

∆C > 0 and ∆S > 0, ∆P > 0) would mechanically arise between a seller-initiated

trade (bid price) and a buyer-initiated trade (ask price). In this case, the option

price change would be equal to the bid-ask spread. For similar reasons, a violation

II (∆S > 0, ∆C < 0 and ∆S < 0, ∆P < 0) would arise between a buyer-initiated

trade and a seller-initiated trade.

To assess the impact of microstructure effects on the EMP violations, we explicitly

account for the direction of option trades. We test if the occurrence frequencies of

violations I and II are critically affected by whether option price changes are computed

between a bid and an ask price, an ask and a bid price, two bid prices, or two

ask prices. Our intuition suggests that violations I should be more frequent when

option price changes are computed between a bid and an ask price. In the same

way, violations II should be more frequent when option price changes are computed

between an ask and a bid price. We recompute the type I and II violation rates

using an additional dataset provided by the LIFFE, which contains all quotes on the

FTSE-100 options from the year 2002. For each transaction price, we check in this

additional file whether the trade occurred at the bid price or at the ask price.
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We compute occurrence frequencies of violations I when option price changes are

computed between a bid price and an ask price, and other combinations, i.e., ask-bid,

bid-bid, or ask-ask. For violations II, we break down the sample between option price

changes computed between an ask price and a bid price, and other combinations,

i.e., bid-ask, bid-bid, or ask-ask. The results in Table 7 lend a great deal of support

to a microstructural explanation for the frequent violations of the EMP. Indeed, it

turns out that violations I are two or three times more frequent between a bid and an

ask price than for other price sequences. Analogously, violations II are two or three

times more frequent between an ask and a bid price. Once the effect of the bid-ask

bounce has been isolated, violation rates of the EMP for sampled intra-day option

prices remain in the 3-6% range for call options and 2-5% range for put options.

< INSERT TABLE 7 >

3.4.3 Do Violations Arise from Rational Trading Tactics?

Another potential reason for having violations of the EMP may simply be tactical

trading in a market characterized by (1) price/time priority and (2) moderate liquid-

ity.13 To illustrate our point, let us consider the case of a given trader who aims to

sell 50 call contracts. Currently, the bid price for the call option is $99, the ask price

is $100, and the most recent trade was at $100. She might be willing to sell at $99.50,

if she knew she could execute right away, especially if her order is not first in line.

She does not want to lower her offer price because she would still have uncertainty

about when and whether she could trade, but she would give up the opportunity

to sell at $100. Over time, the underlying stock index would jiggle around, maybe

rising a small amount from where it was at the last option trade, without causing any

changes in the options market. Now a new bid price comes into the option market at

$99.50, so she decides to hit the bid and sell. The data would show that the index

level went up, but the option price went down. Yet in this case, the violation of the

EMP would arise from rational trading tactics.

Such tactical trading behavior might be more likely when the underlying asset has

not changed very much since the last option trade; when there have been relatively

13We thank Stephen Figlewski (the Editor) for suggesting this potential cause of violation of the
EMP.
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few trades on the option contract; late in the trading day; or on Fridays, when option

traders may feel increasingly urgency to get their trades done before the market closes.

To investigate the validity of the trading tactics hypothesis, we estimate the following

PROBIT model using all tick-by-tick and fixed-interval option price changes (up to

three hours):

V iolationi =

α+β1 ·
¯̄̄̄
∆Si
Si

¯̄̄̄
+β2 ·Trading_Activityi+β3 ·Late_Tradingi+β4 ·Fridayi+ ei (7)

where V iolation is a discrete variable equal to one when a given option price change

computed over a time interval ∆t is characterized by a violation I or a violation II,

and zero otherwise, |∆Si/Si| is the absolute value of the size of the relative change in
the stock index over ∆t, Trading_Activity is the daily number of trades on a given

series (a call or a put with a given strike price and a given maturity), Late_Trading

is a discrete variable equal to one if the transaction takes place during the last three

hours of the trading day and zero otherwise, and Friday is a discrete variable equal

to one if the transaction takes place on a Friday and zero otherwise.

We present the regression results in Table 8. For each contract, we report in

the first line the coefficient estimates and the p-values for call options and, in the

second line, the coefficient estimates and the p-values for put options. Consistent

with the trading tactics hypothesis, violations of the EMP are negatively related to

the relative changes in the underlying asset and to the level of activity of the option

contract. Furthermore, our regression results indicate that violations of the EMP

are more likely to happen right before the option market closing, and on Fridays.

These findings are valid for individual contracts, as well as for the combined sample

containing all five contracts. Moreover, we get consistent results with call and put

options.

< INSERT TABLE 8 >
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4 Conclusion

In this paper, we test the empirical validity of the monotonicity property of option

prices using all transaction prices from 2002 for five option contracts written on

the European, French, German, Swiss, and British stock indices. We show that,

depending on the sampling interval (from tick-by-tick price changes to daily price

changes) and the option contract considered, call option prices move in opposite

directions with the underlying asset between 7% and 32% of the time. Similarly for

put option prices, the associated violation rates range from 6% to 35%. Furthermore,

the occurrence rates generally decrease with the length of the time-interval considered

and with the liquidity of the contract.

Our findings contribute to the debate on the optimal hedging frequency. Recently,

Bossaerts and Hillion (2003) use information on concurrent index option and futures

price changes to value and hedge DAX index options using intra-day data. They claim

that the poor performance of their method on real data is caused by the frequent neg-

ative empirical deltas that arise using tick-by-tick price changes. They conclude their

study by stating that the "issue of whether such anomalous co-movements disappear

over longer time intervals deserves further investigation". Our empirical results shed

light on this important issue.

Furthermore, we investigate the causes of the frequent violations of the monotonic-

ity property. Our findings suggest that part of the violations are due to concurrent

changes in volatility. We also consider the microstructure aspects of option mar-

kets. Controlling explicitly for the direction of option trades, i.e., seller-initiated or

buyer-initiated trade, we uncover evidence that a substantial portion of the reported

violations of the monotonicity property are attributable to the bid-ask bounce. Fi-

nally, we show that violations of the monotonicity property can result from rational

trading tactics followed by traders in a market with relatively limited liquidity.
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5 Tables and Figures

Table 1: Option Contracts and Underlying Assets

Europe France Germany Switzerland U.-K.

Underlying DJ EURO CAC-40 DAX SMI FTSE-100
STOXX-50

Option Ticker OESX PXL ODAX OSMI ESX
Option Exchange EUREX EURONEXT EUREX EUREX LIFFE
# Series 1,355 1,181 1,784 1,335 1,317
# Transactions 221,759 130,226 878,744 103,278 63,131
# Contracts Traded 39,560,190 83,708,170 44,048,879 4,238,734 1,897,735
Tick size (Value) .1 (EUR 1) .1 (EUR .1) .1 (EUR .5) .1 (CHF 1) .5 (£ 5)
# Index Observations 165,980 130,259 681,883 126,091 127,587

This table presents for each option contract the underlying stock index, the option code,
the number of different option series (calls and puts), the number of trades on options, the
number of contracts traded, the minimum option-price change (in points and in value),
and the number of observations on the stock index. For all contracts, the sample covers
01.01.2002 - 12.31.2002. Option data are tick data and cash data are available with a one-
minute frequency, except for the DAX index which is available with a 15-second frequency.
Sources for option data: Deutsche Börse Group for ODAX, OSMI, OESX; EURONEXT
for PXL; LIFFE for ESX. Sources for cash data: Olsen Data for DJ EURO STOXX-50,
CAC-40, SMI, FTSE-100; Karlsruhe University for DAX.
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Table 2: Summary Statistics for the Five Option Contracts

Panel A: Options on the European Stock Index (DJ EURO STOXX-50)

Time-to-Maturity
Moneyness SHORT MEDIUM LONG All Maturities

OTM 26.5 - 13,061 42.8 - 9,194 76.4 - 16,503 51.6 - 38,758
(28.0 - 15,756) (49.3 - 10,975) (93.2 - 17,147) (58.8 - 43,878)

ATM 71.5 - 8,750 112.7 - 2,949 206.9 - 3,801 112.5 - 15,500
(75.5 - 9,482) (124.3 - 3,955) (199.1 - 4,304) (116.4 - 17,741)

ITM 230.4 - 547 282.7 - 217 423.7 - 400 306.6 - 1,164
(217.0 - 1,143) (277.1 - 742) (1,148.7 - 1,948) (702.2 - 3,833)

All Moneyness 49.1 - 22,358 63.7 - 12,360 107.1 - 20,704 74.0 - 55,422
(53.3 - 26,381) (79.0 - 15,672) (200.6 - 23,399) (112.1 - 65,452)

Panel B: Options on the French Stock Index (CAC-40)

Time-to-Maturity
Moneyness SHORT MEDIUM LONG All Maturities

OTM 32.5 - 11,855 55.6 - 3,218 84.9 - 2,148 43.4 - 17,221
(34.8 - 12,184) (52.1 - 3,375) (106.7 - 2,520) (48.1 - 18,079)

ATM 80.9 - 4,475 139.8 - 761 232.8 - 283 96.8 - 5,519
(90.2 - 4,829) (142.6 - 685) (249.2 - 402) (107.0 - 5,916)

ITM 238.6 - 141 278.4 - 17 0.0 - 0 242.9 - 158
(222.7 - 322) (668.9 - 25) (371.4 - 178) (294.4 - 525)

All Moneyness 47.4 - 16,471 72.6 - 3,996 102.2 - 2,431 57.6 - 22,898
(53.7 - 17,335) (71.1 - 4,085) (140.4 - 3,100) (67.6 - 24,520)

Panel C: Options on the German Stock Index (DAX)

Time-to-Maturity
Moneyness SHORT MEDIUM LONG All Maturities

OTM 38.1 - 122,254 61.2 - 65,088 100.7 - 55,208 58.6 - 242,550
(43.5 - 107,638) (67.6 - 60,636) (118.9 - 38,628) (64.6 - 206,902)

ATM 112.5 - 44,618 176.0 - 13,723 284.3 - 5,268 140.5 - 63,609
(115.2 - 53,253) (172.6 - 17,282) (258.8 - 9,996) (145.4 - 80,531)

ITM 426.4 - 6,820 856.5 - 2,639 940.7 - 1,849 610.9 - 11,308
(401.9 - 18,521) (441.6 - 6,593) (767.5 - 6,374) (484.2 - 31,488)

All Moneyness 72.5 - 173,692 106.3 - 81,450 141.2 - 62,325 94.6 - 317,467
(101.8 - 179,412) (118.3 - 84,511) (219.5 - 54,998) (126.4 - 318,921)
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Table 2: Summary Statistics for the Five Option Contracts (Continued)

Panel D: Options on the Swiss Stock Index (SMI)

Time-to-Maturity
Moneyness SHORT MEDIUM LONG All Maturities

OTM 46.4 - 3,692 53.9 - 2,084 98.2 - 2,483 63.9 - 8,259
(50.8 - 4,511) (82.7 - 1,778) (141.9 - 2,362) (82.2 - 8,651)

ATM 84.8 - 5,989 139.6 - 1,783 282.1 - 716 112.9 - 8,488
(112.6 - 6,870) (164.1 - 2,028) (327.3 - 1,394) (151.8 - 10,292)

ITM 272.6 - 100 351.2 - 120 754.6 - 81 433.6 - 301
(501.8 - 690) (415.8 - 156) (746.8 - 544) (588.0 - 1,390)

All Moneyness 72.2 - 9,781 101.1 - 3,987 154.5 - 3,280 94.8 - 17,048
(111.7 - 12,071) (137.5 - 3,962) (278.5 - 4,300) (152.0 - 20,333)

Panel E: Options on the British Stock Index (FTSE-100)

Time-to-Maturity
Moneyness SHORT MEDIUM LONG All Maturities

OTM 50.9 - 4,506 75.7 - 1,642 145.5 - 768 67.3 - 6,916
(57.7 - 3,378) (76.9 - 1,571) (161.7 - 676) (75.6 - 5,625)

ATM 146.4 - 4,361 217.5 - 977 382.1 - 80 162.7 - 5,418
(166.0 - 3,788) (235.0 - 935) (452.5 - 294) (195.6 - 5,017)

ITM 545.1 - 67 808.8 - 23 918.3 - 52 724.5 - 142
(716.9 - 272) (916.4 - 192) (954.4 - 88) (824.1 - 552)

All Moneyness 101.2 - 8,934 134.5 - 2,642 211.2 - 900 116.2 - 12,476
(137.0 - 7,438) (191.4 - 2,698) (308.4 - 1,058) (166.3 - 11,194)

Each panel reports, for a given option contract, average transaction prices and number
of observations for the following categories of call options: short-term options (time-to-
expiration less than 30 days), medium-term options (time-to-expiration between 30 and 60
days), long-term options (time-to-expiration less than 60 days), out-of-the-money options
(moneyness less than 0.97), at-the-money options (moneyness between 0.97 and 1.03), and
in-the-money options (moneyness greater than 0.97). Figures for puts are indicated in
parentheses. We omit options with less than six days to expiration, options with an implied
volatility greater than 100%, and options with quoted price strictly below two tick sizes.
Option contracts with less than ten trades during a given day are dropped from the day’s
sample.
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Table 3: Violation Rates by Sampling Interval

Sampling Europe France Germany Switzerland U.-K.
Interval I II I II I II I II I II

Tick-by-tick 9.9 10.3 13.9 14.2 6.1 6.4 9.4 9.9 6.2 6.5
(9.4) (9.2) (14.4) (14.5) (6.2) (6.2) (10.5) (9.7) (5.1) (5.8)

30 minutes 14.9 16.5 15.4 16.1 3.8 4.5 15.6 16.0 6.3 6.1
(16.3) (14.8) (17.2) (16.5) (3.9) (4.2) (20.1) (14.8) (5.9) (5.5)

1 hour 15.3 16.7 14.4 15.4 3.1 3.9 15.1 15.7 5.1 5.5
(16.4) (14.8) (15.7) (15.8) (3.2) (3.9) (17.2) (16.0) (4.2) (4.9)

2 hours 11.4 12.1 10.1 10.8 2.9 4.0 11.3 10.7 4.7 5.3
(11.2) (11.5) (10.9) (12.1) (2.7) (3.9) (12.4) (12.0) (4.4) (4.3)

3 hours 8.0 12.3 7.8 10.3 2.6 3.9 9.8 11.2 4.5 5.1
(10.7) (10.1) (9.6) (11.3) (2.3) (3.8) (11.8) (9.7) (2.8) (5.1)

1 day 3.0 10.1 1.8 9.8 0.6 6.6 2.0 9.5 1.0 7.9
(3.3) (8.0) (2.9) (7.9) (0.6) (5.7) (4.1) (7.6) (0.9) (8.6)

This table presents type I and II violation occurrences for each of the five contracts, as
a percentage of total observations at a given sampling interval: Type I: ∆S<0, ∆C>0 for
calls and ∆S>0, ∆P>0 for puts, and Type II: ∆S>0, ∆C<0 for calls and ∆S<0, ∆P<0
for puts. Figures for puts are indicated in parentheses.

Table 4: Violation Rates Across Maturities and Moneyness

Europe France Germany Switzerland U.-K.
Breakdown I II I II I II I II I II

OTM 10.1 10.5 14.1 14.0 6.2 6.5 8.7 9.1 6.0 6.3
(9.1) (8.9) (14.2) (14.2) (6.4) (6.4) (9.3) (8.7) (5.0) (5.0)

ATM 9.5 10.1 13.4 14.7 5.9 6.4 9.9 10.6 6.3 6.9
(10.0) (9.9) (14.7) (15.1) (6.3) (6.1) (11.5) (10.6) (5.2) (6.8)

ITM 8.1 7.9 17.6 15.7 4.3 4.3 12.2 9.2 5.8 3.8
(10.4) (10.3) (16.0) (17.0) (4.6) (4.7) (9.8) (9.1) (5.4) (4.5)

SHORT 9.4 9.8 13.8 14.2 6.3 6.7 9.7 10.5 6.1 6.7
(9.3) (9.1) (14.2) (14.5) (6.4) (6.3) (10.7) (10.1) (5.5) (6.2)

MEDIUM 9.3 10.0 14.8 14.1 5.9 6.3 9.5 9.4 6.7 6.4
(9.0) (8.6) (15.7) (13.6) (6.1) (6.3) (9.9) (8.4) (4.0) (5.2)

LONG 10.9 11.1 13.7 13.7 5.7 5.8 8.2 8.6 4.9 4.8
(9.9) (9.8) (13.4) (15.6) (5.7) (5.7) (10.5) (9.6) (5.1) (4.3)

This table presents type I and II violation occurrences for out (OTM), at (ATM), and in-
the-money (ITM) options, as well as for short-term, medium-term, and long-term options:
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Type I: ∆S<0, ∆C>0 for calls and ∆S>0, ∆P>0 for puts, and Type II: ∆S>0, ∆C<0
for calls and ∆S<0, ∆P<0 for puts. The results are based on tick-by-tick price changes.
Figures for puts are indicated in parentheses.

Table 5: Percent Price Changes When A Violation Occurs

Sampling Europe France Germany Switzerland U.-K.
Interval I II I II I II I II I II

Tick-by-tick 7.0 3.7 5.0 5.1 2.0 1.9 5.3 4.7 3.6 3.2
(3.2) (3.3) (4.8) (4.2) (1.7) (1.6) (5.8) (3.3) (2.9) (2.5)

30 minutes 6.7 5.4 7.4 6.8 2.3 2.4 7.2 6.6 4.0 3.6
(2.7) (12.2) (7.1) (6.0) (2.2) (2.1) (5.3) (4.1) (3.4) (2.7)

1 hour 8.0 6.8 9.7 8.3 2.6 2.6 9.6 8.2 4.7 4.0
(4.1) (4.5) (9.2) (7.6) (2.4) (2.2) (8.8) (5.2) (3.0) (3.3)

2 hours 9.1 5.9 9.5 8.2 3.0 2.8 7.6 8.3 5.2 4.3
(5.8) (4.2) (9.3) (7.6) (2.7) (2.5) (9.1) (5.8) (3.8) (4.0)

3 hours 6.5 7.7 9.0 8.0 2.8 2.8 8.8 7.7 3.2 3.4
(4.2) (3.9) (9.0) (6.4) (2.8) (2.5) (9.8) (5.7) (3.9) (3.1)

1 day 8.7 8.5 14.3 9.8 4.2 5.1 14.3 9.8 4.8 6.4
(7.1) (17.1) (12.7) (10.3) (3.0) (4.3) (12.0) (9.7) (3.0) (5.9)

This table presents the average absolute option price changes expressed as a percentage
of option prices when a violation I or II occurs: Type I: ∆S<0, ∆C>0 for calls and ∆S>0,
∆P>0 for puts, and Type II: ∆S>0, ∆C<0 for calls and ∆S<0, ∆P<0 for puts. Figures
for puts are indicated in parentheses.
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Table 6: Violation Clustering for Call Options

Original Sample Matching Sample
Violation I II Not I, not II

Europe
I 1,732 (10.1) 1,086 25 621
II 2,463 (14.4) 21 1,705 737

Not I, not II 12,933 (75.5) 721 824 11,388
Total 17,128 (100.0) 1,828 (10.7) 2,554 (14.9) 12,746 (74.4)

France
I 846 (9.3) 567 10 269
II 933 (10.2) 10 591 332

Not I, not II 7,334 (80.5) 297 295 6,742
Total 9,113 (100.0) 874 (9.6) 896 (9.8) 7,343 (80.6)

Germany
I 17,614 (2.8) 3,882 633 13,099
II 24,457 (3.8) 598 6,829 17,030

Not I, not II 597,108 (93.4) 11,985 16,074 569,049
Total 639,179 (100.0) 16,465 (2.6) 23,536 (3.7) 599,178 (93.7)

Switzerland
I 489 (12.3) 339 3 147
II 496 (12.4) 5 395 96

Not I, not II 3,004 (75.3) 103 103 2,789
Total 3,989 (100.0) 447 (11.2) 501 (12.6) 3,041 (76.2)

U.-K.
I 175 (4.7) 57 4 114
II 194 (5.3) 5 66 123

Not I, not II 3,322 (90.0) 92 134 3,096
Total 3,691 (100.0) 154 (4.2) 204 (5.5) 3,333 (90.3)

This table presents, in the column headed "Original Sample", the number and the
percentage of type I and II violations for each of the five contracts: Type I: ∆S<0, ∆C>0
and Type II: ∆S>0, ∆C<0. The original sample contains all 30 minute, 1, 2, and 3
hour call option price changes ∆Ci that have been successively matched with a concurrent
option price changes ∆Cj , where calls i and j have the same underlying asset, the same
expiration date, but different strike prices. The column headed "Matching Sample" presents
the number and the percentage of type I and II violations for the matching observation ∆Cj

knowing that ∆Ci have a violation I, a violation II, or no violation, respectively.
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Table 7: Violation Rates When Controlling for the Bid-Ask Bounce

Sampling Violations I Violations II
Interval All Bid to Ask Others All Ask to Bid Others

Tick-by-tick 6.1 8.7 5.4 6.5 8.4 5.9
(5.1) (7.0) (4.6) (5.8) (7.9) (5.0)

30 minutes 6.3 12.9 4.7 6.1 12.7 4.3
(5.9) (10.0) (4.9) (5.5) (13.1) (3.5)

1 hour 5.1 11.3 3.4 5.5 11.3 3.9
(4.1) (7.9) (3.2) (5.0) (9.9) (3.5)

2 hours 4.7 9.4 3.4 5.3 11.5 3.5
(4.5) (8.7) (3.1) (4.3) (7.0) (3.6)

3 hours 4.5 8.6 3.3 5.1 9.2 3.9
(2.8) (5.5) (2.0) (5.1) (7.5) (4.4)

1 day 1.0 1.8 0.7 7.9 7.4 8.1
(0.9) (1.5) (0.7) (8.6) (9.4) (8.3)

This table reports the type I and II violation occurrences for index options written on
the FTSE-100 stock index at a given sampling interval: Type I: ∆S<0, ∆C>0 for calls and
∆S>0, ∆P>0 for puts, and Type II: ∆S>0, ∆C<0 for calls and ∆S<0, ∆P<0 for puts.
For each transaction, we know whether the trade occurred at the bid price or at the ask
price. For violations I (respectively II), we break down the sample between option price
changes computed between a bid (ask) price and an ask (bid) price and other option price
sequences. Figures for puts are indicated in parentheses.
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Table 8: Violations and Rational Trading Tactics

β1 P-value β2 P-value β3 P-value β4 P-value Obs.

Europe -30.25 0.000 -0.002 0.000 0.028 0.053 0.084 0.000 79,675
(-35.38) (0.000) (0.001) (0.000) (0.103) (0.000) (0.011) (0.000) (90,531)

France -48.83 0.000 -0.003 0.006 0.223 0.000 0.006 0.768 32,518
(-36.41) (0.000) (0.001) (0.142) (0.193) (0.000) (0.100) (0.000) (32,621)

Germ. -87.52 0.000 -0.001 0.000 -0.017 0.019 0.034 0.000 839,388
(-81.88) (0.000) (-0.001) (0.000) (0.002) (0.739) (0.066) (0.316) (809,779)

Switz. -39.43 0.000 0.001 0.747 0.021 0.442 -0.030 0.141 23,344
(-35.64) (0.000) (0.003) (0.000) (0.042) (0.060) (-0.017) (0.344) (28,847)

U.-K. -171.35 0.000 -0.011 0.000 -0.045 0.290 0.093 0.003 17,391
(-229.76) (0.000) (-0.006) (0.003) (-0.054) (0.304) (0.013) (0.737) (12,494)

All -89.57 0.000 -0.003 0.000 0.028 0.000 0.069 0.000 992,316
(-88.39) (0.000) (-0.003) (0.000) (0.088) (0.000) (0.086) (0.000) (974,272)

This table presents the coefficient estimates and the associated p-values of the following
PROBIT model:

Violationi = α+ β1·
¯̄̄
∆Si
Si

¯̄̄
+β2·Trading_Activityi+β3·Late_Tradingi+β4·Fridayi+ei

where Violation is a discrete variable equal to one when a given option price change
computed over a time interval ∆t is characterized by a violation I or a violation II, and zero
otherwise, |∆Si/Si| is the absolute value of the relative change in the level of the stock
index over ∆t, Trading_Activity is the daily number of trades on a given series (a call or
a put with a given strike price and a given maturity), Late_Trading is a discrete variable
equal to one if the transaction takes place during the last three hours of the trading day
and zero otherwise, and Friday is a discrete variable equal to one if the transaction takes
place on a Friday and zero otherwise. The last column reports the number of observations
used in each regression. For each subsample (Europe, France, Germany, Switzerland, U.K.,
and all contracts combined), we report in the first line the values for call options and in the
second line (in parentheses) the values for put options.
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Figure 1:

This figure details the construction of the (1) tick-by-tick price changes and (2) price
changes over a fixed sampling interval (∆t). In this figure, we consider five trades, denoted
trades A, B, C, D, and E. Tick-by-tick price changes are computed between two consecutive
transaction prices irrespective of the elapsed time between the two trades. Fixed-∆t price
changes are computed between a price at time t and the price at the closest trade to∆t+ t,
with the constraint to remain within a ∆t/2 window.
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