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Abstract In this paper we test for structural changes in the conditional dependence of two-
dimensional foreign exchange data. We show that by modeling the conditional dependence
structure using copulae we can detect changes in the dependence beyond linear correlation like
changes in the tail of the joint distribution. This methodology is relevant for estimating risk
management measures as portfolio Value-at-Risk, pricing multi-name financial instruments
and portfolio asset allocation. Our results include evidence of the existence of changes in the
correlation as well as in the fatness of the tail of the dependence between Deutsche Mark and
Japanese Yen.
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1 Introduction

In financial markets, the price movements of different assets are often related. Financial crises,

market deregulations, policy shifts, central bank interventions may cause changes in the way

financial asset prices relate with each other. The dynamics of asset dependence is of importance

in risk management, asset pricing, portfolio allocation and forecasting. Not surprisingly, there

is considerable interest in the dynamic behavior of correlation between different risks as a func-

tion of time. Financial theory and models often assume that (conditional) correlation between

assets are possibly time varying; see for instance the Dynamic Conditional Correlation-GARCH

model from Engle (2002). Loretan and Phillips (1994) study tests for covariance stationarity,

Boyer et al. (1999) investigate pitfalls in tests for changes in correlation, Longin and Solnik

(2001) relate the dynamics of conditional correlation with market trend and Andreou and Ghy-

sels (2003) analyze procedures for testing for changes in conditional correlation. There is an

enormous econometric literature on the use of regime changes for describing non-stationary
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economic data. In the context of time series analysis; see for instance Hamilton (1990). In

the field of monetary policy, regime switches may come about as a consequence of new policy

implementation; see Francis and Owyang (2005). In the latter context, tools have been devel-

oped to measure the influence of both regime changes as well as policy shocks. A further series

of publications concentrates on the relationship between long-memory and the existence of

structural changes, so-called “spurious long memory process”; see Mikosch and Stărică (2000),

Diebold and Inoue (2001), Choi and Zivot (2003), and Mikosch and Stărică (2004).

As with other financial processes, the dependence between exchange rates is exposed to

changes due to general economic events. Although in this case, central bank interventions

are likely to have a definitive impact. For the case studied here of the Deutsche Mark and

the Japanese Yen, prior to the introduction of the EURO, an economic event which has a

strong impact on the Japanese economy, for instance, and not on the German economy can

cause instability in the Yen and trigger a move of investment preferences towards the Deutsche

Mark as compared with the Japanese Yen. This should weaken the dependence between the

two exchange rates. On the other hand, an intervention of the Bank of Japan to ensure

a depreciation of the Yen once the Deutsche Mark depreciates against the Dollar, to keep

Japanese export competitive, might cause an increase in the dependence between the two

exchange rates.

We present a methodology for testing for structural changes, or also so-called change-

points, in the conditional dependence using copulae. Through many examples, we now know

that “there is more to dependence as can be measured through (linear) correlation”. It turns

out that the notion of copula as discussed in Embrechts et al. (2002) yields an excellent tool for

the modeling of nonlinear dependencies. By now, these techniques have achieved the text book

level; see for instance Cherubini et al. (2004) and McNeil et al. (2005). Dynamic dependence

structures modeled with copulae are for instance to be found in Rockinger and Jondeau (2006),

Fortin and Kuzmics (2002), Patton (2006a) and Patton (2006b).

In this paper we go further. We assume that the multivariate asset return process is

dynamic heteroskedastic and the asset returns are to be standardized by conditional volatility

estimates. We take a two-stage estimation approach. We standardize each univariate return

series using GARCH volatility models (see Andersen et al. (2005)), and then test for changes

in the conditional dependence with parametric (copula) models. Two-stage model estimation

can be found in the literature on semi-parametric modeling, as in Andreou and Ghysels (2003),

or in a full-parametric modeling context as in Engle and Sheppard (2001) and Patton (2006b).
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The methodology we present here is new in two aspects. First, our procedure allows for testing

for changes not only in the conditional covariance or correlation but also to test for changes in

the complete conditional dependence. Second, we assume that both the number of changes and

when they happen are unknown. The goal is to uncover structural changes which might not

impact on the covariance, such as changes in the tails of the conditional distribution. A change

in the conditional tail distribution is not detected when testing for changes in the correlation

and has obvious consequences in any computation involving the joint distribution like tail risk

measures such as Value-at-Risk or Expected Shortfall.

We analyze daily US Dollar-Deutsche Mark and US Dollar-Japanese Yen exchange rates

from April 1986 till October 1998. For this period, we test for changes in the conditional

dependence modeled by a parametric copula. The results show clear evidence of changes in the

correlation and changes in the tail dependence between the two exchange rates. One of the most

relevant results is a significant change in the dependence by the time when the fall of the Berlin

wall took place (November 9, 1989): the conditional correlation drops substantially and the

tail dependence weakens. The explanation might be that such event increased the uncertainty

in the German economy without having a similar impact in Japan. The burst of the Japanese

asset price bubble seems to have had the opposite effect by strengthening the dependence as

we find a change in that direction in the correlation in October of 1990. Although, the tail

dependence did not change. We find a further drop in the conditional correlation in June of

1997 now possibly due to a bigger impact of the Asia crisis on the Japanese Yen. The last

change we remark here is detected in October of 1995 where the tail dependence weakens so

considerably that we can statistically assume asymptotic tail independence until the end of the

period covered by the data sample, October 1998.

We detect more changes in the data which are reported later in the paper but for which

we did not find immediate related economic events. One possible explanation is that changes

in the dependence may also occur smoothly through time instead of suddenly. We are not

modeling these smooth changes. Hence, the test statistic will point to a certain date as a

change-point when in reality it is a smoothly changing process. This is not necessarily a

disadvantage. Assuming a constant dependence with changes at certain points will lead to

more stable portfolio Value-at-Risk and (dynamic) asset allocation than if we use dynamic

models where the dependence is allowed to change at every point in time. Modeling the

conditional dependence as being constant in time, yet allowing for the possibility of breaks to

occur, lies between models with the over simplifying assumption of constant dependence and
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the highly parameterized time varying dependence models. If constant models are too simple

for the evidence found in data, the time varying models are statistically much more difficult to

estimate. By way of an economically relevant example, in this paper we present a new tool to

financial experts that we hope will have potential for a more careful, yet parsimonious analysis

of financial data.

This paper proceeds as follows. In Section 2, we present the theory of change-points for

copulae. In Section 3, we test for changes in the conditional dependence between the US

Dollar-Deutsche Mark and US Dollar-Japanese Yen. In the same section we perform several

statistical specification and goodness-of-fit tests. Section 4 contains a summary of the results

and concludes the paper.

2 Tests for structural changes in the conditional dependence

In this section we concentrate on the theoretic methods we use for the detection of structural

changes in the conditional dependence of a multivariate time series. The first step is the

standardization of the logarithmic univariate returns, rt = pt − pt−n where pt stands for the

logarithmic price of a financial asset at time t ≥ 0 and n > 0 is the time between observations or

return frequency. We decompose the return series as rt = µt + σt εt, where εt are independent

and identically distributed with zero mean and unit variance, and σt is the conditional standard

deviation at time t. As a consequence, the σ−standardized returns are given by

εt =
rt − µt

σt
, t ≥ 1.

The process σt is not observable and its most widely used (univariate or multivariate) estimators

involve autoregressive conditional heteroskedasticity (ARCH) type models, stochastic volatility

models, realized volatility measures, and continuous-time models; see Andersen et al. (2005)

for a systematic review of volatility measures and specific references. We choose to filter

the returns with ARCH-type volatility models. As these are parametric models we prevent

possible erroneous inference by performing tests for model specification and structural breaks

in the univariate margins in our data analysis.

The stability of the dependence structure of the d-dimensional vector process of filtered

returns εit, for i = 1, 2, . . . , d, is then to be tested for structural breaks. Loretan and Phillips

(1994), Longin and Solnik (2001), Andreou and Ghysels (2003), among others, consider the

detection of breaks in the conditional covariance. As the univariate filtered returns are assumed

to be independent and identically distributed (iid), the only possible source of instability is the
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dependence structure which is completely characterized by the copula as shown by Sklar (1959).

We consider a parametric copula-based model for the multivariate conditional filtered returns

F (ε1t, . . . , εdt; θt) = C(F1(ε1t), . . . , Fd(εdt);θt)

= C(u;θt)

where F is the conditional distribution function of the filtered returns, Fi (i = 1, 2, . . . , d)

are univariate continuous distribution functions of the margins, C is a copula function with

vector parameter θt. For ease of exposition, we concentrate on the bivariate case, d = 2. The

methodologies used here can be extended to higher dimensions by considering copula-based

models with the appropriate dimension.

2.1 Detecting change-points in copula parameters

Testing for breaks in the multivariate conditional distribution of the filtered returns is equivalent

to testing for breaks in the copula. We analyze this issue through a change-point detection

technique for parametric copula models. There are several well known tests on structural breaks

in econometric time-series analysis; see for instance Bai (1997), Bai and Perron (1998), Hansen

(2001), and Polzehl and Spokoiny (2006). Here, we test for changes in the copula parameters,

estimate the size of those changes and the corresponding time of occurrence. For related work,

see for instance Gombay and Horváth (1999). For a detailed treatment of the change-point

theory underlying our approach, see Csörgő and Horváth (1997) and references therein, and

Dias and Embrechts (2002).

Let U1,U2, . . . ,Un be a sequence of independent random vectors in [0, 1]d with univariate

uniformly distributed margins and copulae C(u; θ1,η1), C(u; θ2,η2), . . . , C(u; θn, ηn) respec-

tively, where θi and ηi are the copula parameters such that θi ∈ Θ(1) ⊆ Rp and ηi ∈ Θ(2) ⊆ Rq.

We will consider the ηi as constant parameters and look for one single change-point in θi. For-

mally, we test the null hypothesis

H0 : θ1 = θ2 = . . . = θn and η1 = η2 = . . . = ηn

versus the alternative

HA : θ1 = . . . = θk∗ 6= θk∗+1 = . . . = θn and η1 = η2 = . . . = ηn.

If we reject the null hypothesis, k∗ is the time of the change. All the parameters of the model

are supposed to be unknown under both hypotheses. If k∗ = k were known, the null hypothesis
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would be rejected for small values of the likelihood ratio statistic

Λk =

sup
(θ,η)∈Θ(1)×Θ(2)

∏
1≤i≤n

c(ui; θ, η)

sup
(θ,θ′,η)∈Θ(1)×Θ(1)×Θ(2)

∏
1≤i≤k

c(ui; θ, η)
∏

k<i≤n

c(ui; θ′, η)
, (1)

where we assume that C has a density c. The estimation of Λk is carried out through maximum

likelihood. Denote

Lk(θ,η) =
∑

1≤i≤k

log c(ui; θ, η)

and

L∗k(θ, η) =
∑

k<i≤n

log c(ui;θ, η).

For each k, 1 ≤ k ≤ n, we can find unique estimates θ̂k, θ∗k and η̂k such that Lk(θ̂k, η̂k) and

L∗k(θ
∗
k, η̂k) are points of maxima. Then the likelihood ratio equation can be written as

−2 log(Λk) = 2
(
Lk(θ̂k, η̂k) + L∗k(θ

∗
k, η̂k)− Ln(θ̂n, η̂n)

)
.

As k is unknown, H0 will be rejected for large values of

Zn = max
1≤k<n

(−2 log(Λk)). (2)

2.1.1 Asymptotic critical values

The asymptotic distribution of Z
1/2
n is known but has a very slow rate of convergence; see

Csörgő and Horváth (1997), page 22. In the same reference we can also find an approximation

for the distribution of Z
1/2
n derived to give better small sample rejection regions. Indeed, for

0 < h < l < 1, the following approximation holds:

P
(
Z1/2

n ≥ x
)
≈ xp exp(−x2/2)

2p/2Γ(p/2)
.

(
log

(1− h)(1− l)
hl

− p

x2
log

(1− h)(1− l)
hl

+
4
x2

+ O

(
1
x4

))
, (3)

as x →∞ and where h and l can be taken as h(n) = l(n) = (log n)3/2/n. Note that in (3) p is

the number of parameters that may change under the alternative. This result turns out to be

very accurate as shown in a simulation study in Dias and Embrechts (2002) where it is applied

to the Gumbel copula.
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2.1.2 The time of the change

If we assume that there is exactly one change-point, then the maximum likelihood estimator

for the time of the change is given by

k̂n = min{1 ≤ k < n : Zn = −2 log(Λk)}. (4)

In the case that there is no change, k̂n will take a value near the boundaries of the sample. This

holds because under the null hypothesis, and given that all the necessary regularity conditions

hold, for n → ∞, k̂n/n
d−→ ξ, where P (ξ = 0) = P (ξ = 1) = 1/2; see Csörgő and Horváth

(1997), page 51. This behavior was verified in a simulation study for the Gumbel copula under

the no-change hypothesis in Dias and Embrechts (2002).

2.1.3 Multiple Changes

In case there exist more than one change-point we use a sequential procedure coupled with

hypothesis testing proposed by Vostrikova (1981) in the context of multidimensional processes

with unknown parameters. This method is studied for detecting multiple breaks (one at a time)

in the mean of a process in Bai (1997). It is introduced as a computationally advantageous

alternative to the simultaneous estimation in Bai and Perron (1998) and detects simultaneously

the number and the location of the change-points. The sequential method consists of first

applying the likelihood ratio test for one change. If H0 is rejected then we have the estimate

of the time of the change k̂n. Next, we divide the sample in two subsamples {ut : 1 ≤ t ≤ k̂n}
and {ut : k̂n < t ≤ n} and test H0 for each one of them. If we find a change-point in

any of the sets we continue this segmentation procedure until we do not reject H0 in any of

the subsamples. Given the existence of multiple change-points and different change-sizes, the

method might over- or underestimate the location of a change-point. To overcome this question,

after estimating the m change-points k̂1 < k̂2 < . . . < k̂m we use the fine-tuning repartition

procedure from Bai (1997). Accordingly, each change-point k̂i is reestimated by applying the

test to the subsample {ut : k̂i−1 + 1 ≤ t ≤ k̂i+1}, where k̂0 = 0 and k̂m+1 = n.
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3 The conditional dependence of US Dollar-Deutsche Mark

and US Dollar-Japanese Yen

We analyze here the bivariate daily logarithmic returns1 of US Dollar-Deutsche Mark (USD-

DEM) and US Dollar-Japanese Yen (USD-JPY) exchange rates. The observations cover the

period from April 27, 1986 until October 25, 1998. The data set was kindly provided by

Wolfgang Breymann and Olsen Data and previously treated and cleaned as explained in Brey-

mann et al. (2003). After the data cleaning the returns data set consists of 3 259 daily ob-

servations. Table 1 contains some summary statistics. From these statistics we observe that

both series show a nonsignificant trend, have negative skewness and excess kurtosis2. The

unconditional linear correlation estimate yields a significant correlation between the two se-

ries. In order to test for conditional heteroscedasticity, we consider the ARCH effects test

proposed by Engle (1982). For the two series the hypothesis of no ARCH effects has to be re-

jected. Our goal in this section is to model the conditional dependence underlying the bivariate

Summary statistics

USD-DEM USD-JPY

Mean -0.0112 -0.0128

Standard deviation 1.0182 1.0026

Skewness -0.1234 -0.3171

Kurtosis 4.6838 5.7735

Linear correlation 0.6243

No ARCH effects: LM test

USD-DEM USD-JPY

Test statistic 35.25 75.99

P-value 0.000 0.000

Table 1: Summary statistics of the USD-DEM and USD-JPY returns and test of the null

hypothesis of no ARCH effects.

USD-DEM, USD-JPY exchange rate returns. By now, a standard approach is based on the

notion of conditional copula, as discussed in Patton (2006b). In this two-stage procedure, one

first models the marginal dynamics and then the dependence structure.
1In the remaining of the paper we refer to the daily logarithmic returns simply as the returns.
2The values for the kurtosis given are to be compared with a value of 3 for the standard normal distribution.
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3.1 Modeling the univariate margins

The marginal tests presented in Table 1 reveal the presence of time-varying variance and heavy

tailedness. In our discrete-time setting, we model stochastic volatility effects by GARCH type

models. In particular, we fit univariate ARMA-GARCH models to each marginal series with

innovations assumed to be Student-t distributed.

Formally, consider the sequence of iid random variables with zero mean and unit variance

(εt)t∈Z. The process (rt)t∈Z is an ARMA(p1, q1)-GARCH(p2, q2) if it satisfies the equations

rt = µt + εt

µt = µ +
p1∑

i=1

φi (rt−i − µ) +
q1∑

j=1

θjεt−j

εt = σtεt

σ2
t = α0 +

p2∑

i=1

αiε
2
t−i +

q2∑

j=1

βjσ
2
t−j

(5)

where α0 > 0, αi ≥ 0 for i = 1, 2, . . . , p2, βj ≥ 0 for j = 1, 2, . . . , q2 and εt is independent

of (rs)s≤t. The polynomials φ(z) = 1 − φ1z − . . . − φp1z
p1 and θ(z) = 1 − θ1z − . . . − θp1z

q1

have no common roots and no roots inside the unit circle. See Brockwell and Davis (1991)

and Bollerslev et al. (1992) for more details. In each univariate model we consider an extra

parameter γ in the GARCH dynamics. The parameter γ attempts to take into account that

innovations of different signs may have asymmetric impacts on the future variance; see for

example Bollerslev et al. (1992) and references therein. This improvement is also possible

in the model specified in (5); see Ding et al. (1993) and Zivot and Wang (2003) where the

GARCH component of model (5) is treated as a special case of a power GARCH model. The

last equation in (5) then becomes

σ2
t = α0 +

p2∑

i=1

αi(|εt−i|+ γiεt−i)2 +
q2∑

j=1

βjσ
2
t−j . (6)

We fit univariate ARMA-GARCH models by maximum likelihood to each marginal series

assuming that the innovations εt come from a Student-t distribution with ν degrees of freedom.

We use the usual t-statistic α̂/σ̂α̂ to test whether the general model parameter α is zero.

Table 2 presents the estimates of the parameters of the models with the respective asymptotic

standard errors in parenthesis. The moving average component could be removed for either

series. The USD-DEM data require an autoregressive lag of order one and the USD-JPY needs

an autoregressive lag of order ten. The necessary lags for the ARCH and GARCH components
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are both of order one for the two exchange rates. For the USD-DEM returns we cannot reject

the null hypothesis of γi = 0 for the estimated asymmetry parameter and in the case of USD-

JPY, we reject the same null hypothesis. The rejection of γi = 0 for the USD-JPY, given that

the estimate value γ̂ is negative, indicates that negative shocks on the USD-JPY rate have a

larger impact on future volatility than positive shocks.

Univariate modeling

USD-DEM USD-JPY

estimate(s.e.) estimate(s.e.)

Constant, µ̂ -0.0046 (0.0161) 0.0226 (0.0153)

AR(1), φ̂1 -0.0343 (0.0165) –

AR(10), φ̂10 – 0.0597 (0.0163)

GARCH constant, α̂0 0.0423 (0.0185) 0.1267 (0.0481)

Lagged ε2, α̂1 0.0348 (0.0088) 0.0726 (0.0213)

Lagged variance, β̂1 0.9160 (0.0215) 0.7927 (0.0623)

Asymmetry, γ̂1 – -0.1557 (0.0801)

Degrees of freedom, ν̂ 5.7967 (0.5557) 4.8894 (0.4119)

Table 2: This table shows the maximum likelihood estimates and corresponding asymptotic

standard errors obtained from fitting ARMA-GARCH models to each of the return series USD-

DEM and USD-JPY.

From the fitted ARMA-GARCH model parameters we recover the residuals or filtered

returns ε̂t for each univariate time series (r1, r2, . . . , rn):

ε̂t = (rt − µ̂t)/σ̂t, t = 1, 2, . . . , n. (7)

Once the univariate models are selected and fitted, the dynamics as well as the goodness-

of-fit of the t-density, must be checked. We use the Ljung-Box (L-B) and the the multivariate

Portmanteau test for testing for serial correlation on the filtered returns up to the fourth

moment and on the absolute values of the residuals. With the Anderson-Darling (A-D) test

we assess the goodness-of-fit of the t-density and with Jarque-Bera test the normality of the

filtered returns. We also test for heteroscedasticity or ARCH effects and for the existence of

structural breaks on the univariate filtered returns. In Table 3 we report the p-values obtained

for these tests.

The L–B and the Portmanteau tests give indication of no serial or cross correlation. There

is no evidence of remaining ARCH effects. The goodness-of-fit tests for the marginal distribu-

tions reject normality, according to the J–B test, and do not reject the Student-t distribution,

according to the A–D test. That confirms our choice of a Student-t for the innovations of the
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Tests on the filtered returns (p-values)

Null hypothesis USD-DEM USD-JPY Multivariate test

No serial correlation of 1st moment 0.1204 0.5328 0.0614

No serial correl of absol values 0.8456 0.6803 0.8525

No serial correlation of 2nd moment 0.9702 0.9154 0.9690

No serial correlation of 3rd moment 0.1225 0.2474 0.5524

No serial correlation of 4th moment 0.3969 0.2942 0.9481

No ARCH effects 0.9663 0.9183 –

Normally distributed 0.0000 0.0000 –

Student-t distributed 0.6452 0.3105 –

No structural breaks 0.5829 0.1025 –

Table 3: Here are shown the p-values obtained when testing for serial correlation, cross corre-

lation, ARCH effects and structural breaks in the filtered returns of USD-DEM and USD-JPY.

The p-values of the normality Jarque-Bera and Student-t Anderson-Darling goodness-of-fit

tests are also given.

models. We also tried to include crossed lagged returns in these models but without success.

We also tested the existence of change-points in the parameters of the distribution of the uni-

variate filtered returns. If the marginal models are appropriate then the filtered returns should

come from a Student-t distribution with constant parameters (location, scale and degrees of

freedom). Given the results for non serial correlation reported in Table 3 we assume each

univariate filtered returns series to be independent. We test the null hypothesis of no change-

points in any of the three parameters of the univariate Student-t applying (2) and (3). For the

USD-DEM we obtain a test statistic value of z
1/2
n obs = 3.195 to which corresponds a p-value of

0.5829 according to (3). In the case of the USD-JPY filtered returns we have that z
1/2
n obs = 3.880

which implies a p-value of 0.1025. In both cases we do not reject the no change-points hypoth-

esis. On the other hand, there is a significant contemporaneous linear correlation between the

two filtered time series. The estimated linear correlation is ρ̂ = 0.6180 which turns out to be of

the same order as the one obtained for the (non-filtered) returns. It is this dependence that we

want to model using copulae. In the next section we perform a copula analysis of the bivariate

filtered returns.

3.2 Modeling the conditional dependence structure: copula

In this section we model the dependence structure or copula between the two exchange rates

USD-DEM and USD-JPY filtered returns. There are many parametric families of copulae; see
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Nelsen (1999), Joe (1997) and McNeil et al. (2005). As we do not know at this stage whether

there are or not changes in the conditional dependence, we first perform a static copula analysis

in order to restrict the class of parametric copula families we want to concentrate on. Later in

the analysis, once the change-points are detected we check the appropriateness of the copula

model again (see Section 3.4).

Assuming at first stationarity, suppose that the USD-DEM filtered returns are represented

by ε1 and the USD-JPY by ε2. Assume that (ε1, ε2) has multivariate distribution function F

and continuous univariate marginal distribution functions F1 and F2. In order to investigate

the dependence, we fit copula-based models of the type

F (ε1, ε2; θ) = C(F1(ε1), F2(ε2);θ), (8)

where C is a copula function, which we know to exist uniquely by Sklar’s Theorem (Sklar

(1959)), parameterized by the vector θ ∈ Rq with q ∈ N. The corresponding model density is

the product of the copula density c and the marginal densities f1 and f2:

f(ε1, ε2; θ) = c(F1(ε1), F2(ε2);θ)f1(ε1)f2(ε2),

where c is the copula density of model (8) and is given by

c(u1, u2;θ) =
∂2C(u1, u2; θ)

∂u1 ∂u2
, (u1, u2) ∈ [0, 1]2.

Denote by {(ε1i, ε2i) : i = 1, 2, . . . , n} a general random sample of n bivariate observa-

tions. The marginal distribution functions Fi, i = 1, 2, are estimated by the rescaled empirical

distribution functions Fin(z) = 1
n+1

∑n
j=1 I{y∈R : y≤z}(εij). As usual IA denotes the indicator

function of the set A. After the marginal transformations to the so-called pseudo observations

(F1n(ε1i), F2n(ε2i)) for i = 1, 2, . . . , n, the copula family C is fitted. Suppose that its density

exists, we then maximize the pseudo log-likelihood function

L(θ; ε) =
n∑

i=1

log c(F1n(ε1i), F2n(ε2i);θ). (9)

The dependence parameter θ̂ which maximizes (9) is the pseudo log-likelihood estimate intro-

duced by Genest et al. (1995) in the iid case and further studied by Chen and Fan (2005) in

the non-iid case. Note however that the preliminary ARMA-GARCH filtering may increase

the variance of the estimates of θ.

The copula families considered are: t, Frank, Plackett, Gaussian, Gumbel, Clayton, symme-

trized Joe-Clayton and the mixtures Gumbel with survival Gumbel, Clayton with survival
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Clayton, Gumbel with Clayton and survival Gumbel with survival Clayton; for details on these

classes see Joe (1997), Nelsen (1999), Embrechts et al. (2002), McNeil et al. (2005) and Patton

(2006b). Denoting the copula family A with parameter θ by CA(·, ·;θ), the fitted mixtures

have distribution functions of the form

C(u1, u2;θ) = θ3 CA(u1, u2; θ1) + (1− θ3) CB(u1, u2; θ2). (10)

The above choice of copula models is partly based on previous analyses, on tractability and

flexibility, on methodological results and also to allow for a fairly broad class with respect

to extremal clustering and possible asymmetry. The Gaussian copula is included mainly for

comparison. The models were ranked using the Akaike information criterion

AIC = −2L(θ̂; ε) + 2k

and the Bayesian information criterion

BIC = −2 ln
(
L(θ̂; ε)

)
+ k ln(n)

where n is the number of observations and k is the number of parameters of the family fitted.

Parameter estimates and asymptotic standard errors (s.e.) for all fitted models are listed in

Table 4. The mixture of Gumbel and survival Gumbel and the t-copula are the best ranked

models. While the Gumbel mixture model allows for asymmetry, the t-copula is symmetric.

We test for asymmetry of the Gumbel mixture. As the AIC of these two models is close and

the BIC favours the t-copula, if the Gumbel mixture reveals to be symmetric then we prefer to

use the t-model because of the economic interpretation of its parameters and because it is very

well known in the econometric literature. We perform a likelihood ratio (LR) test for possible

asymmetry in the Gumbel mixture model (10); we tested for the null hypothesis

H0 : θ1 = θ2 and θ3 = 0.5

versus the alternative

HA : θ1 6= θ2 or θ3 6= 0.5.

A low p-value indicates that a three parameter asymmetric Gumbel mixture model is signifi-

cantly better than the one parameter symmetric model. This turns out not to be the case. We

obtain a p-value of 0.1842 favoring the symmetric model. This may seem in contrast to Patton

(2006b) where for DEM-USD and JPY-USD daily data, the symmetrized Joe-Clayton copula

model indicates asymmetry. We also test for asymmetry in the symmetrized Joe-Clayton cop-

ula model for our data set. We obtain a p-value of 0.641 rejecting the hypothesis of asymmetry.
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A comparison of these results may not be straightforward because the two data sets cover dif-

ferent periods. Based on the above we continue the analysis of our data with a t-copula model.

Further support for the t-based models is to be found in Breymann et al. (2003), Demarta and

McNeil (2005), McNeil et al. (2005), Daul et al. (2003), Rosenberg and Schuermann (2006) and

Pesaran et al. (2004).

Conditional dependence: copula modeling

θ̂1 (s.e.) θ̂2 (s.e.) θ̂3 (s.e.) AIC BIC

Clayton 1.034 (0.035) – – -1252.289 -1246.200

Frank 4.599 (0.124) – – -1446.464 -1440.375

Gumbel 1.679 (0.023) – – -1500.065 -1493.976

Plackett 7.772 (0.350) – – -1526.993 -1520.904

Gaussian 0.617 (0.009) – – -1552.695 -1546.606

Clayton & survival Clayton 1.548 (0.120) 1.280 (0.099) 0.494 (0.032) -1599.798 -1581.530

Symmetrized Joe-Clayton 0.417 (0.018) 0.430 (0.017) – -1603.307 -1591.129

Clayton & Gumbel 1.665 (0.045) 1.844 (0.249) 0.671 (0.037) -1629.394 -1611.126

Surv. Clayton & surv. Gumbel 1.816 (0.071) 1.234 (0.195) 0.656 (0.039) -1632.435 -1614.167

Gumbel & survival Gumbel 1.588 (0.072) 1.952 (0.117) 0.501 (0.048) -1642.460 -1624.192

t-copula 6.012 (0.786) 0.620 (0.010) – -1640.061 -1627.883

Table 4: Results from fitting copula models to the filtered returns of USD-DEM and USD-JPY.
The table shows the model parameter estimates and the asymptotic standard errors. In case
of the mixture copulae, θ1 and θ2 are the dependence parameters respectively for the first and
second terms of the mixture. θ3 is the mixture parameter which gives the proportion of the
first term. For the t-copula, θ1 stands for the degrees of freedom and θ2 is the correlation. The
last two columns display the information criteria AIC and BIC obtained for each model.

3.3 Testing for structural changes in the conditional dependence between

DEM and JPY

In this section we test for the occurrence of change-points in the dependence structure of

the conditional distribution of USD-DEM and USD-JPY modeled by a t-copula. For that

we test for change-points in the copula parameters of the filtered returns of USD-DEM and

USD-JPY exchange rates data. Concretely we use the procedures from Section 2 to estimate

change-points in the correlation and degrees of freedom parameters of a t-copula fitted to the

filtered returns. For the change-points found, we estimate the size of those changes and the

corresponding time of occurrence. We also look for economic events that may have triggered

these changes. After filtering the univariate returns using the GARCH type models reported

in Table 2 of Section 3.1, given the results in Table 3 we can assume the filtered returns to be

a sequence of independent bivariate vectors with no breaks in the univariate margins. Hence,

we are in the required conditions for testing for the existence of change-points in the copula
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parameters. We use (2) and (3) for detecting possible change-points in the parameters of the

multivariate contemporaneous conditional distribution.

In the first step, we test for change-points assuming that one or two parameters may

change: degrees of freedom and/or correlation. This corresponds to p = 2 in expression (3).

We evaluate Λk for k = 1, 2, . . . , n where n = 3 259; see (1). The test statistic (2) takes the

value z
1/2
n obs = 13.49 and by (3) we have that P (Z1/2

n > 13.49) ≈ 0. The null hypothesis of

no change-point is to be rejected and the estimated time of the change is k̂n = November

8, 1989; coinciding with the fall of the Berlin wall. See Table 5 row corresponding to I in

the first column. The values obtained in this and subsequent tests are displayed in Table 5.

Next, the sample is divided in two sub-samples, one up to November 8, 1989 and another

from the estimated time of change onwards. For each sub-sample Λk is computed as well as

Z
1/2
n . The rows corresponding to II in the first column of Table 5 have those values. As the

obtained p-values are close to zero we reject the null hypothesis of no change for each sub-

sample and estimate two more change-points, December 29, 1986 and June 9, 1997. The later

date corresponds to the beginning of the Asia crisis starting with the devaluation of the Thai

Baht. Each sub-sample is again divided in two and the procedure is repeated yielding the

estimates in the rows corresponding to III. For these results, only for the maximum attained

z
1/2
n obs n P

“
Z

1/2
n > z

1/2
n obs

”
H0(0.95) Time of change

I 13.49 3 259 0.0000000 reject 8 Nov. 1989

II 6.21 922 0.0000006 reject 29 Dec. 1986

5.51 2 337 0.0000330 reject 9 June 1997

III 3.28 176 0.1133105 not rej. –

3.02 746 0.3006019 not rej. –

5.87 1 979 0.0000047 reject 23 Oct. 1990

2.35 358 0.9999999 not rej. –

IV 2.71 249 0.4409689 not rej. –

4.25 1 730 0.0087136 reject 18 Oct. 1995

V 5.99 1 302 0.0000022 reject 26 Sept. 1994

2.87 428 0.3620263 not rej. –

VI 3.06 1 023 0.2917965 not rej. –

2.21 279 0.9216038 not rej. –

Table 5: Change-point analysis for USD-DEM and USD-JPY conditional dependence. In the

column “Time of change” the dates are the change-points estimated.

at October 23, 1990 the null hypothesis is rejected at a 5% level. This change-point might be
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related with the burst in the Japanese asset price bubble. Next we have to split the sub-sample

November 8, 1989 till June 9, 1997 in two at the date October 23, 1990. From these two tests we

estimate a change-point in October 18, 1995. So we still have to split this sub-sample further.

The first from October 23, 1990 until October 18, 1995 and the second from this date up to

June 9, 1997. The last change-point is estimated at September 26, 1994. Testing in further

sub-samples does not lead to a rejection of the no change-point hypothesis. These values are in

the rows corresponding to VI of Table 5. In summary we found six change-points: December

29, 1986, November 8, 1989, October 23, 1990, September 26, 1994, October 18, 1995 and June

9, 1997.

Three questions have to be raised now. The detected change-points were obtained in a se-

quence of tests where the boundaries of the sub-samples depend on the change-points detected

in the previous tests, except for the first test performed on the full sample. Also multiple

change-points and different change-sizes may induce the tests to under- or overestimate the

location of the change-point. We solve this question by applying the fine-tuning repartition

procedure from Bai (1997) as explained in Section 2.1.3. Hence, each change-point is reesti-

mated by testing on the sub-sample which has only that particular change-point according to

the first sequence of tests. The second question has to do with the sub-sample sizes. As the

boundaries of the sub-samples are defined by the estimated change-points each sub-sample has

a different size. That is not a problem because the approximation for the distribution of the

test statistic (3) takes the sample size into account. Yet, some sub-samples might have a small

size which raises the question of the power of the test. The smallest sub-sample tested has size

n = 176 and we obtained good results for the power of the test in case of smaller samples with

n = 100 in our previous work Dias and Embrechts (2002). For this reason, although this ques-

tion would deserve a full study by itself, we are confident about the results obtained here. The

third question is a reminder that in the sequence of tests performed the null hypothesis con-

siders that the two parameters may change. The implication is that the fine-tuning repartition

procedure has to be applied twice. Once, where we test for a change-point in the correlation

and constant degrees of freedom. Second, where we test for a change-point in the degrees of

freedom and constant correlation. Using this procedure, besides checking the location of the

change-point we identify if the change occurred in the correlation, in the degrees of freedom or

in both parameters of the t-copula model.

Table 6 reports the results from the fine-tuning procedure. The change-point estimated in

December 29, 1986 is identified to have occurred in the correlation only. On the other hand
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Breaks in the t-copula correlation, ρ

z
1/2
n obs n P

“
Z

1/2
n > z

1/2
n obs

”
Time of change

3.70 922 0.0000003 29 Dec. 1986

11.93 997 0.0000000 8 Nov. 1989

5.01 1 273 0.0000573 23 Oct. 1990

5.85 1 302 0.0000006 26 Sept. 1994

6.51 707 0.0000000 24 Oct 1995

3.94 787 0.0047889 1 July 1997

Breaks in the t-copula degrees of freedom, ν

z
1/2
n obs n P

“
Z

1/2
n > z

1/2
n obs

”
Time of change

3.72 997 0.0111743 30 Oct. 1989

3.83 1 302 0.0078626 17 Oct. 1994

4.50 707 0.0005187 16 Oct. 1995

Table 6: Results from the fine-tuning procedure reestimating the change-points on the con-

ditional dependence between USD-DEM and USD-JPY. At the same time we test for each

change-point which of the two t-copula model parameters changed. In the top panel are dis-

played the change-points in the correlation and in the bottom panel are the change-points in

the degrees of freedom. Remark the closeness of the change-point in the correlation in Novem-

ber the 8, 1989 and the change-point in the tail parameter in October 30, 1989. These two

breaks might be related with the fall of the Berlin wall in October 9, 1989.

the second estimated change-point turns out to be a change-point in the correlation and in

the degrees of freedom. This change seems to be related with the fall of the Berlin wall in

November 9, 1990. October 23, 1990 is found to have been a change-point in the correlation.

It is interesting to note that the former date (October 23, 1990) corresponds to the burst in

the Japanese asset price bubble. On October 18, 1990, the USD-JPY ended a fall from about

158 to 125. The change-points estimated in September/October 1994 and October 1995 are

change-points in the degrees of freedom and in the correlation. Finally, in July 1997 we estimate

a change-point in the correlation only. This date corresponds to the beginning of the Asia crisis

starting with the devaluation of the Thai Baht. We did not find particular economic events

possibly associated with some of the change-points detected. A reason for this could be that

smooth rather than sudden changes can occur in the dependence structure. In these cases we

do not expect to find an event justifying a sudden change in the dependence. Hence, in case of

smooth changes we are modeling the dependence dynamics with jumps at a certain points in

time but otherwise constant. This approach can have advantages in terms of its applications
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when compared with a time-varying modeling where changes occur at every point in time.

This is the case, for instance, of the DCC-GARCH or BEKK model from Engle and Kroner

(1995). The change-point approach will give more stable portfolio Value-at-Risk estimates with

changes at a certain points when compared with a time-varying correlation model. Dynamic

portfolio asset allocation and pricing are other examples where the same reasoning applies.

The test for change-points, besides detecting the time of the change, also allows to compute

the size of the change. Let us consider now that aspect of our empirical study. For the periods

between the times of changes we estimated the parameters of the t-copula model. Although

the change-points estimated for the degrees of freedom are close to change-points estimated for

the correlation, they do not coincide precisely. For this reason we exclude the small periods

between those from the fitting procedure. Specifically we do not consider the observations in

the periods: October 10, 1989 till November 11, 1989; September 26, 1994 till October 17,

1994; and October 16, 1995 till October 24, 1995. Table 7 has the estimates for the correlation

and degrees of freedom obtained for each sub-sample. We look for an interpretation for the

raises and falls estimated in the correlation and in the degrees of freedom (or fatness of the tail

distribution). A change in the dependence structure must be the result of an event, economic

variable or policy change which impacts more in the Deutsche Mark than in the Japanese Yen or

vice versa. For instance, if the Deutsche Mark falls against the US Dollar the Japanese central

bank might impose a fall in the Yen in order to keep the competitiveness of its exportations.

This would induce a strengthening of the dependence between the two exchange rates. A raise

in the Yen against Deutsche Mark might be stopped also by the central bank with the same

consequences for the dependence. The change in the correlation from 0.315 to 0.585 estimated

in October, 1990 around the burst of the Japanese asset prices seems to be an example. On

the other hand, an event or developments which might anticipate instability in the German

economy say, but not in the Japanese economy should originate a weakening in the dependence

between Mark and Yen. In fact, by the time of the fall of the Berlin wall we estimate a reduction

in the correlation from 0.832 to 0.315. The Asia crisis seems to have had a similar effect as the

correlation decreased from 0.556 to 0.348 in July of 1997.

As a function of the correlation and degrees of freedom, the coefficient of asymptotic tail

dependence for the t-copula model (see Embrechts et al. (2002)) takes the form

λ(ρ, ν) = 2t̄ν+1

(√
ν + 1

√
1− ρ√
1 + ρ

)
,

where t̄ν+1 denotes the tail, or survival function, of a univariate Student-t distribution with ν+1

degrees of freedom. The estimated values for the coefficient of asymptotic tail dependence are
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t-copula correlation ρ, and coefficient of tail

dependence λ, estimated between change-points

Period ρ̂ (s.e.) λ(ρ̂, ν̂)

27 April 1986 till 29 Dec. 1986 0.634 (0.042) 0.288

29 Dec. 1986 till 30 Oct. 1989 0.832 (0.010) 0.482

8 Nov. 1989 till 23 Oct. 1990 0.315 (0.059) 0.053

23 Oct. 1990 till 26 Sept. 1994 0.585 (0.019) 0.149

17 Oct 1994 till 24 Oct. 1995 0.784 (0.024) 0.384

24 Oct. 1995 till 1 July 1997 0.556 (0.029) 0.000

1 July 1997 till 25 Oct. 1998 0.348 (0.046) 0.000

t-copula degrees of freedom, ν, estimated between change-points

Period ν̂ (s.e.)

27 April 1986 till 30 Oct. 1989 5.220 (1.075)

8 Nov. 1989 till 26 Sept. 1994 8.570 (2.408)

17 Oct. 1994 till 16 Oct. 1995 6.215 (3.049)

24 Oct. 1995 till 25 Oct. 1998 +∞

Table 7: Estimated correlation and degrees of freedom between the change-points detected,

using the t-copula model for the dependence between USD-DEM and USD-JPY. The third

column of the upper panel of the table has the coefficient of tail dependence values obtained

from the estimated model parameters.

in the last column of Table 7. We can observe that there is a real impact on the tail dependence

when there are changes in the correlation and degrees of freedom. The most notable impact

is when the degrees of freedom estimate changes to infinity in October 1995. From there

onwards we can assume asymptotic tail independence between the two exchange rates. In

terms of Value-at-Risk this means a reduction in the quantile from a heavy tailed to a thin

tailed distribution.

3.4 Specification tests and comparison with a benchmark model

After having estimated the number and the location of change-points for the correlation and

degrees of freedom in the t-model we have to check if the model for the dependence structure

is well specified. In order to check this, we have to repeat the procedure of choosing the best

copula model applied in Section 3.2 for the full sample, but now for each sub-sample between

the change-points. Again, as the change-points estimated for the degrees of freedom are close

to change-points estimated for the correlation, we exclude the small periods between those just
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as in Section 3.3. The best BIC ranked model after fitting the eleven models listed in Table 4

to each sub-sample are reported in Table 8. The results confirm that the t-copula model is

Best ranked copula model

Period Model

27 April 1986 till 29 Dec. 1986 t-model

29 Dec. 1986 till 30 Oct. 1989 t-model

8 Nov. 1989 till 23 Oct. 1990 t-model

23 Oct. 1990 till 26 Sept. 1994 t-model

17 Oct. 1994 till 16 Oct. 1995 t-model

24 Oct. 1995 till 1 July 1997 Gaussian-model

1 July 1997 till 25 Oct. 1998 Gaussian-model

Table 8: Results from fitting copula models to the filtered returns of USD-DEM and USD-JPY

between the estimated change-points. For each sub-period between change-points the table has

the best ranked model (using the BIC criterion) among the eleven copula models fitted before

to the all sample in Section 3.2.

the best choice among the proposed models. For the observations after October 1995 the best

model is the Gaussian copula. This confirms the infinitely large degrees of freedom estimate

for the period after October 1995 reported in Table 7. We recall here that the Gaussian copula

is the limit of the t-copula when the degrees of freedom of the later go to infinity.

We compare our results obtained by modeling the dependence structure allowing for breaks

with a benchmark model where the dependence can also be time-varying. A model which allows

for this flexibility is the BEKK model from Engle and Kroner (1995). The dependence structure

in the BEKK is modeled by a dynamic variance-covariance matrix for which the components

change on time. This model can be used with Student-t bivariate innovations which is needed

for these data. Although the BEKK model does not allow for time-varying degrees of freedom

we can compute the modeled correlation path and compare it with the change-point results. In

the case of the BEKK model the degrees of freedom of the multivariate Student-t innovations

are constant and the same for all the margins and for the dependence structure. These are two

relevant constraints because on one hand the change-point tests revealed the existence of breaks

in this parameter and on the other hand, for our data, the degrees of freedom of each margin

and of the copula are different as can be seen from Tables 2 and 8 respectively. A BEKK

model has a large number of parameters which have to be simultaneously estimated. The

estimation of this model is difficult especially when the innovations are assumed to be Student-

t distributed and becomes unwieldy in higher dimensions. The change-points detection is a far
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more parsimonious approach. In order to use the BEKK we model the conditional mean of each

spot rate returns, USD-DEM and USD-JPY, using the model in Equations (5) and (6), and

then estimate a bivariate Student-t BEKK model on the residuals. A Gaussian BEKK model

was first fitted but did not pass the goodness-of-fit tests for the residuals. The specification tests

for the Student-t BEKK model are reported in Table 9. The residuals pass the Ljung-Box test

for serial correlation and cross-correlation up to the second moment, the test for ARCH effects

and the Anderson-Darling goodness-of-fit Student-t test. As expected they fail the normality

test.

Tests on the Student-t BEKK filtered returns (p-values)

Null hypothesis USD-DEM USD-JPY Multivariate test

No serial correlation of 1st moment 0.8940 0.3240 0.8555

No serial correl of absol values 0.7477 0.4034 0.6010

No serial correlation of 2nd moment 0.8963 0.4838 0.8868

No ARCH effects 0.8724 0.4864 –

Normally distributed 0.0000 0.0000 –

Student-t distributed 0.7260 0.1310 –

Table 9: Here are shown the p-values obtained from the Ljung-Box tests for serial correlation

and cross-correlation for the first four moments and absolute values of the returns filtered by

the Student-t BEKK model. The table also contains the p-values from the ARCH effects LM

test, the normality Jarque-Bera and Student-t Anderson-Darling goodness-of-fit tests for the

same filtered returns of USD-DEM and USD-JPY.

To visualize the results we display in Figure 1 the time-varying correlation path estimated

from the BEKK model, super-imposed with the estimated change-point cross-correlation for

the seven periods between the times of change. The BEKK correlation path is extremely

jagged. We pose the question how much of this dynamics in the correlation are actually noise.

On the other hand, by construction the path for the correlation given by the change-points is

constant between those. The change-point analysis seems to detect the main features of the

changes in the dynamic correlation curve and ignores smaller changes.
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Conditional cross−correlation of daily returns
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Figure 1: Estimated correlation paths of daily returns on the FX USD-DEM and USD-JPY

spot rates. The long-dashed line is the estimated correlation by the change-point tests. This

is super-imposed on the estimated correlation using the time-varying Student-t BEKK model

from Engle and Kroner (1995). The short-dotted line is the time-invariant correlation estimate

after the univariate GARCH filtering. The change-points model reacts quicker to important

economic events as the fall of the Berlin wall in November 1989 than the time-varying model

and ignores smaller possible changes given by the BEKK model.
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4 Conclusion

The aim of the paper is essentially twofold. First of all, we want to contribute to the ongoing

discussion between practitioners and academics in order to advance the methodological ba-

sis for risk measurement technology. No doubt, thinking beyond linear correlation, and this

through the notion of copula, contributes to this goal. Second, through the example of the two-

dimensional FX data, we were able to come up with a parsimonious conditional dependence

model taking changes in the dependence structure into account. Evidence for the existence of

changes in the conditional correlation between foreign exchange spot rates has been reported

in the literature; see for instance Andreou and Ghysels (2003). Economic events, changes

in the economic variables or central bank measures are liable of producing changes in the

co-movements of prices in financial markets and in particular in foreign exchange rates. We

present a methodology which combines the use of change-point tests and the decomposition

of the multivariate distribution of asset prices in its marginal distributions and dependence

structure. As such, we are able to detect structural changes without having to assume a priori

a possible date for their occurrence. Further we can detect changes beyond linear correlation

which nevertheless have an important impact in relevant risk measures, in pricing or in asset

allocation. That is the case for changes found in the heaviness of the tail of the multivari-

ate distribution. The procedure consists of modeling the univariate marginal dynamics with

ARMA-GARCH models and testing for changes in the conditional dependence modeled with

parametric copula models. The result is a two stage parcimonious procedure easier to estimate

although able to model dynamics beyond what can be captured by benchmark models as the

DCC-GARCH or the BEKK from Engle (2002) and Engle and Kroner (1995) respectively.

Applying the methodology presented we find changes in the correlation and in the heaviness of

the tail of the dependence between Deutsche Mark and Japanese Yen modeled by a t-copula.

The change points found relate to specific economic events. The most relevant ones are a drop

in the correlation and in the heaviness of the tail related with the fall of the Berlin wall in

1989. Another is a strengthening in the correlation around the burst in the Japanese asset

price bubble in the fall of 1990.

Acknowledgements

We acknowledge useful discussions with Alexander McNeil and some anonymous referees for

detailed comments on earlier versions of this paper.

23



References

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2005). Parametric and nonparametric

volatility measurement. In: Handbook of Financial Econometrics (Ed. L. P. Hansen and Y.

Ait-Sahalia), Amsterdam: North-Holland, forthcoming.

Andreou, E. and Ghysels, E. (2003). Tests for breaks in the conditional co-movements of assets

returns. Statistica Sinica, 13:1045–73.

Bai, J. (1997). Estimating multiple breaks one at a time. Econometric Theory, 13:551–63.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural

changes. Econometrica, 66:47–78.

Bollerslev, T., Chou, R. Y., and Kroner, K. (1992). ARCH modeling in finance. J. Economet-

rics, 52:5–59.

Boyer, B. H., Gibson, M. S., and Loretan, M. (1999). Pitfalls in tests for changes in correlations.

Board of Governors of the Federal Reserve System, International Finance Discussion Papers,

597.

Breymann, W., Dias, A., and Embrechts, P. (2003). Dependence structures for multivariate

high-frequency data in finance. Quant. Finance, 3:1–14.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer-Verlag,

New York, second edition.

Chen, X. and Fan, Y. (2005). Estimation of copula-based semiparametric time series models.

Journal of Econometrics, 130(2):307–35.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. Wiley,

Chichester.

Choi, K. and Zivot, E. (2003). Long memory and structural breaks in the forward discount:

An empirical investigation. Journal of International Money and Finance, Forthcoming.
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