
Estimating and forecasting volatility with
large scale models: theoretical appraisal of

professionals’ practice

Paolo Zaffaroni ∗

Imperial College London

This draft: 27th April 2006

∗Address correspondence to:
Tanaka Business School, Imperial College London, South Kensington Campus, SW7 2AZ
London, tel. + 44 207 594 9186, email p.zaffaroni@imperial.ac.uk



Abstract

This paper examines the way in which GARCH models are esti-
mated and used for forecasting by practitioners. Although it permits
sizable computational gains and provide a simple way to impose posi-
tive semi-definitiveness of multivariate version of the model, we show
that this approach delivers non-consistent parameter’ estimates. The
novel theoretical result is corroborated by a set of Montecarlo exer-
cises. Various empirical applications suggest that this could cause, in
general, unreliable forecasts of conditional volatilities and correlations.

Keywords: GARCH, RiskmetricsTM , estimation, forecasting, multivariate volatility
models.
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1 Introduction

Accurate forecasting of volatility and correlations of financial asset returns
is essential for optimal asset allocation, managing portfolio risk, derivative
pricing and dynamic hedging. Volatility and correlations are not directly
observable but can only be estimated using historical data on asset returns.
Financial institutions typically face the problem of estimating time-varying
conditional volatilities and correlations for a large number of assets. More-
over, fast and computationally efficient methods are required. Therefore,
parametric models of changing volatility are those most commonly used,
rather than semi- and non-parametric methods. In particular, the autore-
gressive conditional heteroskedasticity (ARCH) model of Engle (1982), and
the generalized ARCH (GARCH) of Bollerslev (1986), represent the most
relevant paradigms. GARCH models are easy to estimate and fit financial
data remarkably well (see Andersen and Bollerslev (1998)). In fact, GARCH
models do account for several of the empirical regularities of asset returns
(see Bollerslev, Engle, and Nelson (1994)), in particular dynamic conditional
heteroskedasticity.

The popularity of GARCH models among practitioners in part stems
from their close analogies with linear time series models such as autore-
gressive integrated moving average models (ARIMA), as well as with other,
a-theoretical, models such as the exponentially weighted moving average
(EWMA) model. Precisely by exploiting such analogies has permitted a
feasible and computationally fast method for evaluating the conditional time-
varying covariance matrix for a large number of assets, of the order of the
hundreds. This method, which can be viewed as a highly restricted multivari-
ate GARCH, has been popularized under the name of RiskMetrics TM ap-
proach (see J.P.Morgan/Reuters (1996)). In this paper we shall call this the
common approach, acknowledging that it has been the dominant paradigm
used by most financial analysts in the last years (see J.P.Morgan/Reuters
(1996) and Litterman and Winkelmann (1998)).

Given the widespread evidence of practitioners using the common ap-
proach, this paper examines its theoretical underpinnings and effective per-
formance. Surprisingly, very little theoretical research has been carried out
on this topic. A notable exception is Cheng, Fan, and Spokoiny (2003) who
nest the common approach within a wide class of filtering problems. They
show that, under mild conditions, the filtering performance of the common
approach does not depend on whether one uses (observed) square returns
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rather than the (unobserved) volatility process. This paper focuses instead
on the estimation part of the filtering. Its main contribution is to show how
the estimation method, embedded within the common approach, delivers
non consistent estimates of the model parameters. A Montecarlo exercise de-
scribes the finite-sample properties of the estimator, indicating that its poor
performance does not only arise asymptotically. Consequently, misleading
forecasts are likely to occur. More importantly, conditional cross-covariances
and correlations are poorly estimated, possibly leading to unexpected risk
exposure when the estimated conditional covariance matrix is used to cal-
culate dynamic hedge-ratios, Value-at-Risk performance and mean-variance
efficient portfolios.

The common approach is frequently carried out without preliminary
estimation, with parameters fixed a priori. When a change in the dynamic
pattern of the data is likely to occur, calibrated parameters values must
change accordingly. New estimates are needed in such circumstances and
this is troublesome for the common approach. The impossibility to estimate
parameters’ model all depends on the particular, albeit attractively simple,
specification that characterizes the common approach.

Adopting the common approach contrasts with the use of correctly spec-
ified GARCH models which we will be referring to as the correct approach.
Practical applications of the correct approach for large scale problems (in-
volving a large number of assets) is limited by the large number of parameters
involved. As a consequence, the several proposed versions of multivariate
GARCH models entail strong forms of parametric simplification, in order
to achieve computational feasibility. Recent advances include the orthogo-
nal GARCH model of Alexander (2001), the dynamic conditional correlation
(DCC) model of Engle (2002), which generalizes the constant conditional cor-
relation model of Bollerslev (1990), the regime-switching DCC of Pelletier
(2002) and the averaged conditional correlations of Audrino and Barone-
Adesi (2004). Bauwens, Laurent, and Rombouts (2003) provides a complete
survey of this literature.

This paper proceeds as follows. Section 2 presents both the univariate
common and correct approach. In particular, Section 2.1 describes the way
in which univariate GARCH models are routinely specified and estimated by
practitioners. Section 2.2 recalls the correct specification of GARCH models
and related estimation issue. Section 2.3 looks at the small-sample properties
of the estimation nested within the common approach by means of a set
of Montecarlo exercises. A comparison of the predictive ability of the two
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approaches is described in Section 2.4, based on the Olsen’s data set of the
spot Mark/Dollar foreign exchange rate. Multivariate models are examined
in Section 3, which also proposes two further empirical illustrations based
on the Olsen’s data set and on the Standard & Poor’s 500 industry indexes.
Concluding remarks are in Section 4. Section 5 contains a mathematical
appendix.

2 Univariate case

2.1 Common approach

Let Pt be the speculative price of a generic asset at date t and define the
continuously compounded one-period rate of return as rt = ln(Pt/Pt−1). To
focus on the volatility dynamics, assume for the sake of simplicity that the
rt are martingale differences:

E(rt | Ft−1) = 0, (1)

where Ft defines the sigma-algebra induced by the rs, s ≤ t. The simplest
estimator of the conditional variance E(r2

t | Ft−1) = σ2
t is the weighted rolling

estimator, with window of length n:

σ̂2
t =

n∑
s=1

ws(n)r
2
t−s (2)

where the weights ws(n) satisfy

ws(n) ≥ 0, lim
n→∞

n∑
s=1

ws(n) = 1,

(see J.P.Morgan/Reuters (1996, Table 5.1) and Litterman and Winkelmann
(1998, eq.(1)) among others). σ̂2

t is a function of n but we will not make
this explicit for simplicity’s sake. Important particular cases of (2) are the
equally weighted estimator, for ws(n) = 1/n, and the exponentially weighted
estimator, for

ws(n) = (1− λ0) λs−1
0 , (3)
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for constant 0 < λ0 < 1, known as the decay factor. The weights (3) yield
the popular EWMA estimator

σ̂2
t = (1− λ0)

n∑
s=1

λs−1
0 r2

t−s. (4)

The practical appeal of the EWMA estimator (4) lies in the fact that, by
suitably choosing λ0, the estimate will be more sensitive to newer observa-
tions than to older observations (cf. J.P.Morgan/Reuters (1996, p.80) and
Litterman and Winkelmann (1998, p.15)). Computationally, EWMA is not
more burdensome than simple averages, thanks to the recursion

σ̂2
t = λ0 σ̂2

t−1 + (1− λ0)r
2
t−1,

where the initial condition σ̂2
t−n implies another term λn

0 σ̂
2
t−n on the right

hand side of (4). For practical implementation,

σ̂2
t =

(1− λ0)

(1− λn
0 )

n∑
s=1

λs−1
0 r2

t−s. (5)

is used, rather than (4), ensuring that
∑n

s=1 ws(n) = 1 for any finite n. (5)
implies the recursion

σ̂2
t = λ0 σ̂2

t−1 +
(1− λ0)

(1− λn
0 )

r2
t−1 −

(1− λ0)

(1− λn
0 )

λn−1
0 r2

t−n−1.

Typically, the initialization of such recursion is based on the sample variance
of a pre-sample of data. Alternatively, assuming to observe a sample r1, ..., rT

of data and for a given n, one can evaluate (5) for t ≤ n with an expanding
window (replacing n with t− 1), and returning to (5) when t > n.

When the weights ws(n) vary suitably with n, the rolling estimator, though
a-theoretical, can be justified as a non-parametric estimator of the conditional
variance. This rules out the possibility that σ̂2

t nests the EWMA (4) which,
however, is closely related to parametric time series models, such as GARCH.
The weights of the (rolling) EWMA (23) vary with n but without converging
towards zero as n grows to infinity, again ruling out the non-parametric
interpretation.

The rt are said to obey the GARCH(1, 1) model when satisfying

rt = ztσt, (6)

σ2
t = ω0 + α0r

2
t−1 + β0σ

2
t−1 a.s. (7)
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where a.s. stands for almost surely. The {zt} represent an independent and
identically distributed (i.i.d.) sequence with mean zero and unit variance.
Equation (6) then satisfies (1). The coefficients ω0, α0 and β0 must be non-
negative for σ2

t to be well defined (cf. Bollerslev (1986)). When

α0 + β0 = 1, (8)

one obtains the integrated GARCH(1, 1) (henceforth IGARCH(1, 1)), by re-
placing (7) with

σ2
t = ω0 + α0r

2
t−1 + (1− α0)σ

2
t−1 a.s. (9)

Recursive substitution (n times) in (9) yields

σ2
t = ω0

(
1− (1− α0)

n−1

α0

)
+ (1− α0)

nσ2
t−n + α0

n∑
s=1

(1− α0)
s−1r2

t−s. (10)

Imposing
ω0 = 0 (11)

IGARCH(1, 1) (10) and EWMA (4) coincide.
GARCH have, moreover, a close connection with ARMA (cf. Bollerslev

(1986)). In fact, setting

νt = r2
t − σ2

t = (z2
t − 1)σ2

t ,

GARCH(1, 1) has an ARMA(1, 1) representation

r2
t = ω0 + (α0 + β0)r

2
t−1 + νt − β0νt−1.

Note that the νt are martingale differences (not necessarily with finite vari-
ance). Under (8) one gets an ARIMA(0, 1, 1)

r2
t = ω0 + r2

t−1 + νt − (1− α0)νt−1. (12)

Therefore, the squares r2
t display a unit root with non-negative drift. It is

well known that for standard, linear, unit root models, with positive drift,
the series diverges a.s. to infinity. This suggested to focus on IGARCH(1, 1)
models satisfying (11) (cf. J.P.Morgan/Reuters (1996, eq. (5.37)) and Lit-
terman and Winkelmann (1998, eq. (4))).
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For estimation, let us introduce the parameterized model

σ2
t (α) = αr2

t−1 + (1− α)σ2
t−1(α), σ2

0(α) = 0.

with α ∈ (0, 1). Given the emphasis on forecasting, the parameter α0 is
routinely estimated by least squares (LS), i.e. minimizing the mean square
error (MSE) of the predictions:

MSET (α) =
1

T

T∑
t=2

(
r2
t − σ2

t (α)
)2

(13)

yielding
α̂lse

T = argminα∈[α,ᾱ]MSET (α), (14)

for given 0 < α < ᾱ < 1 (cf. J.P.Morgan/Reuters (1996, section 5.3.2.1)).
The α, ᾱ can be chosen arbitrarily, yet the minimization in (14) necessarily
requires the definition of a compact interval, bounded away from both zero
and unity.

We now show that specifying GARCH models by imposing (11) has dra-
matic implications. Therefore, exploiting the analogies of GARCH models
with both EWMA and ARIMA, could lead to misleading inferences and fore-
casting results.

The crucial condition, ensuring strict stationarity and ergodicity, for
GARCH(1, 1) is

E ln(β0 + α0z
2
t ) < 0. (15)

(see Nelson (1990, Theorem 1 and 2)), independently of ω0. It is easy to
see that IGARCH(1, 1), with E z2

t = 1, satisfies (15) (see Nelson (1990,
p.321))). Therefore, in contrast to standard linear unit root models, such as
the classical random walk, the r2

t are strictly stationary and do not exhibit
any type of explosive behaviour. This outcome is linked to the fact that,
unlike the standard linear framework, the innovations νt in (12) are not
independent of the r2

s (s < t).
Consider now representation (10) with n = t:

σ2
t = ω0

(
1− (1− α0)

t−1

α0

)
+ (1− α0)

tσ2
0 + α0

t∑
s=1

(1− α0)
s−1r2

t−s.

The most dramatic effect of imposing (11) on IGARCH(1, 1) is that

σ2
t → 0 a.s. for t →∞. (16)
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when (11) holds (see Nelson (1990, Theorem 1)). The impact of this result
can be viewed by means of a simulation, displayed in Figure 1 (left panel),
based on setting α = 0.95. It turns out that the smaller α is, the sooner the
conditional variance will converge towards zero. Note that once σ2

t = 0 for
some t, then σ2

s = 0, and thus rs+1 = 0 for any s ≥ t, as from (9)

σ2
t = σ2

t−1

(
α0z

2
t−1 + (1− α0)

)
,

so zero represents an absorption state for the process.
This asymptotic degenerateness might, nevertheless, not be important

for estimation and forecasting over short horizon. It turns out that this
statement is false, as indicated by the following result, whose proof is in the
Appendix.

Theorem 1 For IGARCH(1, 1), when (11) holds,
(a)

sup
α∈[α,ᾱ]

MSET (α) → 0 a.s. for T →∞ (17)

for any 0 < α < ᾱ < 1.
(b) Under the same conditions

inf
α∈[α,ᾱ]

E
(
MSET (α)|σ2

0

) →∞ for T →∞. (18)

Remarks (i) The first part of Theorem 1 implies that the LS estimator
α̂lse

T is non-consistent for α0 and is therefore meaningless. In fact (17) says
that the MSE, non negative by construction, is (asymptotically) minimized
for any value of α ∈ (0, 1). It follows that α̂lse

T is globally (asymptotically)
unidentified. One might wonder whether this is merely the symptom of a
different rate of convergence, namely whether T bMSET (α) would converge
to a non-random expression for some b 6= 0, uniquely minimized at α0. Simple
inspection of the proof of Theorem 1 shows that T MSET (α) is bounded a.s.
and non zero but the limit is random and model identification fails.
(ii) Cheng, Fan, and Spokoiny (2003) show that no differences arises when
estimating the common approach through (13) with respect to the ideal,
but unfeasible, case when the true volatility is observed and one minimizes
T−1

∑T
t=2 (σ2

t − σ2
t (α))

2
.

(iii) Establishing almost sure convergence plays an important role. In fact,
taking the (conditional) expectation of MSET (α) yields (18) which seems
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to contradict Theorem 1. This (apparent) contradiction is a by-product of
the non stationarity of IGARCH. Basically, the asymptotic behaviour of the
average of moments does not reflect the asymptotic behaviour of the average
of the underlying random variables. Recall that for IGARCH(1, 1) condition
(15) holds.

2.2 Correct approach

Under (15) IGARCH(1, 1) are strictly stationary and ergodic. This implies
that, despite the ARIMA(0, 1, 1) representation, there is no harm in imposing

ω0 > 0. (19)

Indeed, Nelson (1990, Theorem 2) has shown that under (15) and (19)

σ2
t − uσ

2
t → 0 a.s. for t →∞,

setting

uσ
2
t =

ω0

α0

+ α0

∞∑
s=1

(1− α0)
s−1r2

t−s.

uσ
2
t defines the unconditional process, in contrast to σ2

t which defines the
conditional process as it depends on the initial condition σ2

t−n. Moreover, it
has been shown that the uσ

2
t are strictly stationary and ergodic, with a well-

defined non degenerate probability measure on [ω0/α0,∞). Figure 1 (middle
panel), based on setting α = 0.95, provides a typical sample path for the
process. Now the model conditional variance is always bounded away from
zero and the process is never degenerate. IGARCH(1, 1) are, however, not
covariance stationary. In fact, under (8) the rt have infinite variance although
the sample path will not be explosive, thanks to the strict stationarity and
ergodicity. For this reason, the IGARCH(1, 1) parameters ω0 and α0 cannot
be estimated by LS. However, the model is well specified and can be estimated
in various ways, the most common of which is by pseudo maximum likelihood
(PML). The PML estimator (PMLE) is characterized by standard asymptotic
statistical properties (see Lee and Hansen (1994) and Lumsdaine (1996)), and
it is given by

(ω̂pmle
T , α̂pmle

T ) = argminω,α∈[α,ᾱ]×[ω,ω̄] LT (ω, α)
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for constants 0 < α < ᾱ < 1 and 0 < ω < ω̄ < ∞, setting

LT (ω, α) =
1

T

T∑
t=1

ln σ2
t (ω, α) +

1

T

T∑
t=1

r2
t

σ2
t (ω, α)

(20)

with the parameterized conditional variance

σ2
t (ω, α) = ω + αr2

t−1 + (1− α)σ2
t−1(ω, α).

2.3 Small-sample performance

Table 1 reports a Montecarlo exercise in order to evaluate the performance of
the LS estimator α̂lse

T and of the PMLE α̂pmle
T used, respectively, to estimate

the common and the correct approach. One can also compare the com-
mon and the correct approaches using the same estimator, in particular the
PMLE. However, we feel that it is more relevant to compare the two models
using the corresponding estimation procedure most frequently used by prac-
titioners. Moreover, the asymptotic degeneratedness (16) would make the
implementation of the PMLE problematic for the common approach.

Concerning the former, we simulated IGARCH(1, 1) imposing (11), with
α0 = 0.05, 0.75 and 0.95. We consider samples of length 15, 000 and es-
timate the model considering the first 1, 000 observations, the first 5, 000
observations and, lastly, all 15, 000 observations. The MSE is minimized by
numerical methods with a MatLab code, starting from an arbitrary value
equal to 0.5. Such choice should be completely irrelevant for a well speci-
fied model. The non-consistency of α̂lse

T clearly emerges when comparing the
Montecarlo variances (column three) for different sample sizes, which do not
vary with T . On the other hand, when looking at the Montecarlo means
(column two), it seems that the LS estimator is reliable for large values of
α0. (For case α0 = 0.05 also the mean indicates the non consistency). These
numerical results can be better evaluated by looking at the Montecarlo fre-
quency distributions of the LS estimator, reported in Figure 2 (top three
panels). It clearly appears that the LS estimator is both non-consistent and
non-centered (biased) with respect to the true value. Interestingly, note how
the behaviour of the LS estimator for case α0 = 0.95 (top right panel) is
heavily influenced by the initial, very persistent, observations. As a result,
the estimate is close to the true value although in reality this is independent
of its asymptotic statistical properties. It is thus possible that a mis-specified
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model achieves a good forecasting performance. This possibility is investi-
gated in section 2.4.

Columns seven to twelve of Table 1 report the small-sample properties of
the PMLE, based on samples of size T = 1, 000, 5, 000 and 15, 000. Again the
optimization started from the same arbitrary value of 0.5 for α. The estimates
are all centered around the true value and their variance decreases as the
sample size increases, at rate 1/T . The average of (20) across replications,
evaluated at the PMLE (column twelve of Table 1), does not significantly
change with T . The empirical distribution of the estimates are reported in
Figure 2 (bottom three panels).

2.4 Comparing forecasting performances (univariate)

Our theoretical result indicates the inherent difficulties for estimation of the
common approach. We now present a simple empirical application aimed
at providing some evidence on the forecasting implications of the theoretical
result.

We compare the predictive capability of IGARCH(1, 1) models described
in section 2.1 and 2.2, that is with and without condition (11). Hereafter,
we denote the former as model 2 and the latter as model 1. We consider the
Diebold and Mariano (1995) test of predictive accuracy

DMS(L) =
1√
AS

S∑
s=1

(
L(σ2

s ,
(1)σ2

s|s−p)− L(σ2
s ,

(2)σ2
s|s−p)

)
(21)

where S defines the number of p-step ahead forecasts employed and L(a, b)
defines a generic loss function. (1)σ2

s|s−p and (2)σ2
s|s−p express the two, compet-

ing, p-step ahead forecasts of the true conditional volatility σ2
s . The normal-

izing quantity AS is a consistent estimate of the variance of the numerator of
(21), robust to autocorrelation of unknown form (see Diebold and Mariano
(1995, section 1.1) for details), such that under suitable regularity conditions
DMS(L) converges in distribution to a standard normal (for S →∞ ), under
the null hypothesis of equal forecasting performance

E
(
L(σ2

s ,
(1)σ2

s|s−p)− L(σ2
s ,

(2)σ2
s|s−p)

)
= 0.

We employ the well-known data set of Olsen & Ass., frequently used to com-
pare predictive performance of volatility models since Andersen and Boller-
slev (1998). In particular, the data consist of daily and intra-daily returns
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for the Mark/Dollar spot exchange rate (henceforth Mark/Dollar returns),
from July 1, 1974, through September 30, 1992 - 4, 573 observations - for
daily data, and from October 1, 1992, through September 30, 1993 - 74, 880
observations - for intra-daily data (five-minute returns). We then obtain 260
observations of the so-called realized volatility, obtained by summing squared
intra-daily returns (288 intra-daily observations per day), as indicated by An-
dersen and Bollerslev (1998). In this exercise we assume that the realized
volatility expresses true (daily) volatility, denoted by σ2

t , with a negligible
error.

The results are reported in Table 2. The data in levels (returns) have
been preliminary filtered with an AR(1) model. The two volatility models
are then estimated, first, using 4, 573 daily observations, then 4, 573 + 1
observations, and so on up to 4, 573 + 259 observations. West (1996) noted
that the asymptotic distribution of DMS(L) might depend on the sample
variability of parameter estimates. However he established that no effect
arises when the length of the estimation sample dominates the length of the
evaluation sample. Since in our case the former (4, 573) is nearly twenty times
the latter (260), we proceed ignoring the effect of parameter uncertainty. The
averages of the 260 different point estimates of α0 for both models (estimates
of ω0 for model 1 are not reported for the sake of simplicity) are reported
in column two and column three for model 2 and model 1 respectively. For
both models estimation starts from an initial value α = 0.95.

We consider two different types of loss function, the square-rooted ab-
solute difference L(a, b) =| a − b | 12 and the loss function implicit in the
Gaussian log likelihood L(a, b) = ln(b) + a/b (see Bollerslev, Engle, and Nel-
son (1994, section 7)), whose results are reported in columns 4−7 and 8−11
respectively. Four different forecasting horizons are considered: at 1 day, 1
week, 1 month and 6 months ahead. The forecasting function for model 1
(correctly specified IGARCH(1, 1), without imposing (11)), is

(1)σ2
t+p|t = E((1)σ2

t+p|Ft) = pω0 + α0r
2
t + (1− α0)σ

2
t .

For model 2 (degenerate IGARCH(1, 1), imposing (11)) the forecast function
is constant and equal to

(2)σ2
t+p|t = E((2)σ2

t+p|Ft) = α0r
2
t + (1− α0)σ

2
t ,

for any p ≥ 1. Obviously the preceding expressions are in practice evalu-
ated at the estimated, rather than true, parameter values. The choice made
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for the loss functions reflects the estimation methods employed for model 1
and model 2 respectively. The square-rooted absolute difference loss func-
tion should potentially favor model 2 whereas the Gaussian likelihood loss
function should favor model 1. Comparing the results for the two loss func-
tions should avoid biases when assessing the forecasting performance of the
competing models.

There are two main findings. First, the forecasting performance of model
2 is significantly worse than that of model 1 in most cases, or at most not
significantly different from it, for short and medium-run horizons (1 day, 1
week and 1 month). By contrast, for longer horizon (6 months), model 2
outperforms model 1 for the square-root loss function and it is not signifi-
cantly different from model 2 for the Gaussian loss function. This outcome is
not completely surprising. In fact, the asymptotic degenerateness of model 2
implies a well-behaved forecasting function for all horizons, whereas for (the
correctly specified) model 1 the forecasting function diverges to infinity, as
the forecast horizon grows to infinity.

Second, the forecasting performance of model 2 is extremely dependent
on the initial value for σ2

0(α) chosen when estimating the model. The first
four rows of Table 2 refer to different values for σ2

0(α), all arbitrarily chosen,
except for row four for which σ2

0(α) has been estimated jointly with α. Nev-
ertheless, even for this last case, the poor forecasting performance of model
2 emerges (except for the long horizon). In fact, different initial conditions
imply extremely different point estimates for α, as indicated in the second
column reporting the average of the α̂lse

T , and thus different forecasts. The
performance of the two models is comparable when setting σ2

0(α) = 0.1 in
the estimation of model 2, yielding an average of the α̂lse

T equal to 0.881,
not surprisingly close to the average of the α̂pmle

T of 0.851. Clearly, finding
ex-ante a good value for σ2

0(α), to estimate model 2, is not an attainable
task in general. This should not, and in fact is not, an issue for the correct
approach, with the effect of initial conditions being asymptotically negligi-
ble. The last three rows report the result obtained setting σ2

0(α) equal to
the sample variance of the data, and setting α = 0.94. This is the value
suggested by J.P.Morgan/Reuters (1996, p.100) and, presumably, close by to
any other values used by practitioners. The last two rows consider the rolling
EWMA (eq.(5)) with n = 15, 30 whereas row five considers the expanding
window n = t − 1. For these case as well, no significative difference arises
between the two competing models for all but the 6 months horizon.
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3 Multivariate case

Typical situations faced by practitioners, such as optimal asset allocations
and portfolio risk diversification, involve many assets. For instance, J.P.Morgan/Reuters
(1996, p.97) considers the problem of estimating the conditional covariance
matrix of 480 time series. In such circumstances, as discussed in Section 1,
use of correctly specified (unrestricted) multivariate GARCH models is not
a possibility and some form of restrictions are required in order to achieve
computational feasibility. The common approach, instead, is always appli-
cable in such situations, which motivates its widespread use for real time
applications. Note that implementation and estimation of the multivariate
common approach heavily relies on the results derived for univariate case,
fully described in Section 2.1.

3.1 Common approach

Assuming that (1) holds for each asset and that there are m assets, the rolling
estimator for the conditional covariance between the returns of asset i and
asset j is

σ̂ij,t =
n∑

s=1

ws(n)ri,t−srj,t−s, i, j = 1, ..., m, (22)

where ri,t = ln(Pi,t/Pi,t−1) and Pi,t denotes the speculative price of asset i
(see J.P.Morgan/Reuters (1996, Table 5.4) and Litterman and Winkelmann
(1998, eq. (2))). Likewise, the EWMA is

σ̂ij,t = (1− λ0)
n∑

s=1

λs−1
0 ri,t−srj,t−s, (23)

whose recursive form is

σ̂ij,t = λ0σ̂ij,t−1 + (1− λ0)ri,t−1rj,t−1, σ̂ij,t−n = 0. (24)

Note that the parameter λ0 does not vary with i, j and, indeed, this choice
guarantees that the m×m matrix Σ̂t = [σ̂ij,t] (1 ≤ i, j ≤ m), solution of

Σ̂t = λ0Σ̂t−1 + (1− λ0)rt−1r
′
t−1, Σ̂0 = 0,

13



is positive semi-definite, setting rt = (r1,t, ..., rm,t)
′ (cf. J.P.Morgan/Reuters

(1996, p. 97)). Practical implementation of (23) is often based on

σ̂ij,t =
(1− λ0)

(1− λn
0 )

n∑
s=1

λs−1
0 ri,t−srj,t−s, (25)

with the recursion (in matrix notation)

Σ̂t = λ0Σ̂t−1 +
(1− λ0)

(1− λn
0 )

rt−1r
′
t−1 −

(1− λ0)

(1− λn
0 )

λn−1
0 rt−n−1r

′
t−n−1, (26)

with the same initialization issues of the univariate case as discussed after
eq. (5).

First we establish the analogy of EWMA (23) with multivariate GARCH(1, 1).
The latter, in its most general specification, is

rt = Σ
1
2
t zt, (27)

vech(Σt) = Ω0 + A0vech(Σt−1) + B0vech(rt−1r
′
t−1), (28)

where vech(.) denotes the column stacking operator of the lower portion of
a symmetric matrix, zt = (z1,t, ..., zm,t)

′ is an m-valued i.i.d. sequence with
Ezt = 0 and Eztz

′
t = Im where Im is the identity matrix of dimension m×m,

Ω0 is an m(m + 1)/2× 1 vector and A0, B0 are m(m + 1)/2×m(m + 1)/2
matrices of coefficients (see Bollerslev, Engle, and Wooldridge (1988, eq. 4)).
An appealing feature of (28) is that it produces time-varying conditional
correlations, given by (at the one-step-ahead horizon)

ρij,t =
E(ri,trj,t | Ft−1)√

E(r2
i,t | Ft−1)E(r2

j,t | Ft−1)
=

σij,t

σi,tσj,t

, (29)

assuming that (1) holds.
Imposing diagonality and constancy of the diagonal terms of A0, B0

yields
A0 = α0Im(m+1)/2, B0 = β0Im(m+1)/2.

Further imposing (8), one obtains the multivariate IGARCH(1, 1):

σij,t = ωij,0 + α0ri,t−1rj,t−1 + (1− α0)σij,t−1, i, j = 1, ...,m. (30)

14



Despite the ri,t are not covariance stationary, the conditional correlations ρij,t

are well defined. Finally, imposing

ωij,0 = 0, i, j = 1, ...,m, (31)

and
σij,t−n = 0, i, j = 1, ..., m, (32)

the EWMA (24) and the multivariate IGARCH(1, 1) (30) coincide. In matrix
notation, the latter is

rt = Σ
1
2
t zt, (33)

Σt = α0rt−1r
′
t−1 + (1− α0)Σt−1. (34)

Substituting (33) into (34) yields

Σt = Σ
1
2
t−1At−1Σ

1
2
t−1, (35)

setting At = (α0Im + (1− α0)ztz
′
t). From (35) it follows that when Σt = 0

then Σs = 0 and rs = 0 for any s > t, in analogy with the univariate case,
suggesting that

tr(Σt) → 0 a.s. for t →∞, (36)

where tr(·) is the trace operator. The right panel of Figure 1 reports the
results of a simulation exercise showing that (36) really does occur.

As for the univariate case, the asymptotic degenerateness of the process
causes numerous problems. First, note that when (31) is imposed, the condi-
tional correlations (29) are no longer well-defined. For estimation purposes,
one can generalize the procedure of section 2.1, and estimate α0 by minimiz-
ing the multivariate MSE

α̂lse
T = argminα∈[α,ᾱ]

1

T

T∑
t=2

‖ rtr
′
t −Σt(α) ‖2

setting
Σt(α) = (1− α)Σt−1(α) + αrt−1r

′
t−1, Σ0(α) = 0,

where ‖ · ‖ indicates the Euclidean norm.
However, rather than using the LS estimator α̂lse

T , practitioners adopt a
two-stage approach. First, they estimate univariate EWMA for each asset

15



by minimizing the univariate MSE (cf. (13)), yielding α̂
lse,(i)
T (i = 1, ..., m).

They then estimate α0 by a weighted average of the former, yielding

α̃T =
m∑

i=1

φ
(i)
T α̂

lse,(i)
T ,

with weights that penalize assets whose estimated coefficients have a large
MSE:

φ
(i)
T =

(θ
(i)
T )−1

∑m
j=1(θ

(j)
T )−1

, i = 1, ..., m,

setting

θ
(i)
T =

√
MSET (α̂

(i)
T )√

MSET (α̂
(1)
T ) + ... +

√
MSET (α̂

(m)
T )

, i = 1, ...,m,

(see J.P.Morgan/Reuters (1996, section 5.3.2.2)).
As for the univariate case, it turns out that (31) implies that neither

α̂lse
T nor the frequently used α̃T is consistent for α0. Concerning the latter,

Theorem 1 applies directly since α̃T is a weighted average of m estimates of
α0, each of which being non-consistent, and whose weights φi

T converge to
a random limit as T → ∞. An additional drawback of α̃T is that it is, by
construction, completely independent of the information stemming from the
conditional cross-correlations characterizing the data.

3.2 Comparing forecasting performances (multivariate)

This section compares the predictive performance of the common approach
versus the correct approach in a multivariate setting. We illustrate a bivari-
ate (m = 2) and a medium-scale multivariate (m = 22) exercise. Given our
emphasis on the theoretical result, we mirror section 2.4 and adopt a statisti-
cal approach rather than a decision-theoretic approach to forecast evaluation,
such as in Pesaran and Zaffaroni (2004).

Regarding the bivariate specification, we employ the Mark/Dollar spot
exchange rate series described in section 2.4 as well as the time series of
the Yen/Dollar spot exchange rate. (The data are described in Andersen
and Bollerslev (1998).) Considering only the observations which share the
same trading periods yields 4, 573 daily observations - from July 1, 1974,
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through September 30, 1992 - and 74, 304 intra-daily (five-minute returns)
observations - from October 1, 1992, through September 30, 1993. Table 3
describes the results. The return data have been first filtered with an AR(1)
model. For this bivariate exercise we consider the loss functions

L1(A,B) =| a11 − b11 | 12 + | a22 − b22 | 12 + | a12 − b12 | 12 ,
L2(A,B) =| a12/

√
a11a22 − b12/

√
b11b22 |,

for any pair of 2× 2 symmetric matrices

A =

(
a11 a12

a12 a22

)
, B =

(
b11 b12

b12 b22

)
.

The first type of loss function generalizes the square-rooted absolute differ-
ence used in section 2.4. The second type of loss function compares (condi-
tional) cross-correlations. The forecasting function for model 1 is, for p ≥ 1,

(1)Σt+p|t = pΩ̃0 + α0rtr
′
t + (1− α0)Σt.

As for the univariate case, the forecast function of model 2 is constant and
equal to

(2)Σt+p|t = α0rt r
′
t + (1− α0)Σt,

for any p. The results of Table 3 confirm that model 1 significantly out-
performs model 2 in most cases. The results are less conclusive for longer
horizons. The better performance of model 1 is particularly evident when
comparing conditional cross-correlations (columns 8 − 11). This has impli-
cations when one uses multivariate GARCH models to construct optimal
(dynamic) hedge-ratios, so as to minimize portfolio risk. Second, we find the
extreme sensibility of the estimates and forecasting performance of model
2 from initial conditions Σ̃0(α) = σ̃2

0(α)I2. Again, the performance of the
two models is never significantly different when σ̃2

0(α) = 0.1. When deriv-
ing σ̃0(α) jointly with α̃T , the performance of model 2 is significantly worse
than that of model 1 for most cases. Finally, note that the estimates α̃T are
only marginally different from α̂lse

T , as reported in Table 2. (In both cases,
estimation started from α = 0.95.) This is, again, a by-product of the poor
statistical properties of the LS estimator. No significative differences arise
when calibrating model 2 with α = 0.94 and setting Σ̃0(α) equal to the sam-
ple covariance matrix of the data. Summarizing, when comparing variances
and the covariance, the results are very much similar to the univariate case
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of Table 2. However, when comparing conditional correlations, the common
approach never outperforms the correct when λ0 is calibrated. The common
approach is markedly inferior, at all horizons, when the smoothing parameter
is estimated.

For the multivariate exercise, we shall consider the 22 main industry in-
dices of the Standard & Poor’s 500 (source: Datastream) extracted from
the S&P 500 industry price indices defined according to the Global Industry
Classification Standard. Our data set covers the industry indices from 2nd
January 1995 to 13th October 2003 (T = 2291 observation). Daily returns
are computed as rjt = 100 ln (Pjt/Pjt−1) , j = 1, ..., 22, where Pjt is the jth

price index. (For a description of the data, and of their statistical properties,
we refer to Pesaran and Zaffaroni (2004).) We considered the generaliza-
tion of the loss function L1(A,B) in (37) to 22 × 22 matrices, comparing
rit+prjt+p, i, j = 1, ..., 22, with their forecast based on the (i, j)th entry of
(1)Σt+p|t. Returns have not been preliminary filtered with an AR(1) model
since negligible time variation of the conditional mean is documented. Un-
like the univariate and bivariate examples, it is unfeasible to estimate a well-
specified (unrestricted) GARCH model of dimension 22×22 such as (27)-(28).
The dynamic conditional correlation (DCC) of Engle (2002) and its asym-
metric variation, namely the asymmetric DCC (ADCC) of Cappiello, Engle,
and Sheppard (2002), appear superior at describing the dynamic properties
of this data set, when compared with many other multivariate GARCH-
type specifications (see Pesaran and Zaffaroni (2004)). We recall that the
DCC(r,s,R,S) implies (1)Σt = DtRtDt for a diagonal matrix Dt, with a
(square-rooted) GARCH(r, s) on the (i, i)th entry, and, considering a simple
specification (R=S =1), Rt has qhjt/

√
qhht qjjt in its (h, j)th position, setting

Qt = [qhjt]
22
h,j=1 for

Qt = Q (1− γ0 − δ0) + γ0r̃t−1r̃
′
t−1 + δ0Qt−1,

r̃t = D−1
t rt, a positive definite matrix Q and positive parameters satisfying

0 < γ0+δ0 < 1. The DCC(r, s, 1, 1) and the ADCC(r, s, 1, 1), for 1 ≤ r, s ≤ 2,
are compared with the common approach method (26) with λ0 = 0.94, over
the horizon p = 1, 5, 20, 120. Derivation of (1)Σt+p|t for DCC and ADCC
is straightforward and details are skipped for sake of simplicity. All models
were estimated recursively using an expanding window starting with 1784
observations as the first estimation sample. The evaluation sample covers the
last two years of data (from November 2, 2001 to October 13, 2003, inclusive)
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yielding 507−p values for the loss function. However, the parameter values
are updated at monthly intervals, yielding twenty-four set of estimates rather
than 507−p, in order to alleviate the already sizeable computational burden.
The estimates are nor reported for sake of simplicity. All the computations
have been carried out in MatLab and the codes are available upon request.
Compared with the bivariate case, the results, reported in Table 4, now show
more clearly that the correct approach (here represented by DCC and ADCC
models), is markedly superior to the common approach (RiskmetricsTM) for
all cases and all horizon.

4 Concluding remarks

Practitioners face the problem of estimating in real time conditional volatil-
ities and cross-correlations for a large set of asset returns. The so-called
common approach of specifying, estimating and forecasting GARCH mod-
els provides a simple and feasible way to achieve this task. Unfortunately,
as this paper shows, the estimates obtained in this way lack of the usual
(asymptotic) statistical properties. The Monte-Carlo experiments indicates
that such estimation procedure is invalid even in small-sample. The empiri-
cal applications here presented suggest that this can have a non trivial effect
on the forecasting performance of conditional variances and correlations.

5 Appendix

Proof of Theorem 1. (a) Impose (11). Substituting for t times, recursively,
r2
t = z2

t σ
2
t into (9) (cf. Nelson (1990, eq.(6))) yields

σ2
t = σ2

0

t∏
i=1

(1− α0 + α0z
2
t−i). (37)

which is bounded a.s. for any t < ∞ whenever σ2
0 < ∞. Moreover, there

exists a random integer K < ∞ a.s. such that (cf. Nelson (1990, p.320))

t∏
s=1

(1− α0 + α0z
2
t−i) ≤ Ct a.s. for any t > K, (38)

setting
C = e

γ
2 < 1,
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with γ = E ln z2
0 < 0. Next, by Markov’s inequality, for arbitrary ε > 0,

Pr(t−2 z2
t ≥ ε) ≤ 1

εt2

yielding by Borel-Cantelli lemma

z2
t = o(t2) a.s. for t →∞. (39)

Finally, using (a − b)2 ≤ 2(a2 + b2) for any real a, b yields (assume T > K
with no loss of generality)

MSET (α) ≤ 2

T

T∑
t=2

r4
t +

2

T

T∑
t=2

σ4
t (α). (40)

For the first term on the right-hand side of (40), using (38) and (39),

T∑
t=2

r4
t =

K∑
t=2

r4
t +

T∑
t=K+1

r4
t

≤
K∑

t=2

r4
t + σ4

0

T∑
t=K+1

C2tz4
t ≤

K∑
t=2

r4
t + σ4

0

∞∑
t=1

C2tz4
t < ∞ a.s.,

yielding

1

T

T∑
t=2

r4
t = O

(
1

T

)
a.s. for T →∞.

Note that this term is independent of α.
For the second term on the right-hand side of (40)

T∑
t=2

σ4
t (α) =

K+1∑
t=2

σ4
t (α) +

T∑
t=K+2

σ4
t (α)

and

T∑
t=K+2

σ4
t (α) ≤ 2α2

T∑
t=K+2

(
t−K−1∑

s=1

(1− α)s−1r2
t−s

)2

+2α2

T∑
t=K+2

(
t−1∑

s=t−K

(1− α)s−1r2
t−s

)2

(41)
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using

σ2
t (α) = α

t−1∑
s=1

(1− α)s−1r2
t−s.

For the first term on the right hand side of (41), using the cr inequality, viz.
(
∑m

i=1 ai)
2 ≤ m (

∑m
i=1 a2

i ) for any sequence {ai},

α2

T∑
t=K+2

(
t−K−1∑

s=1

(1− α)s−1r2
t−s

)2

≤ σ4
0α

2

T∑
t=K+2

t

(
t−K−1∑

s=1

(1− α)2(s−1)C2(t−s)z4
t−s

)

≤ σ4
0α

2

T∑
t=2

t

(
t−1∑
s=1

(1− α)2(s−1)C2(t−s)z4
t−s

)

≤ σ4
0α

2

T∑
t=2

t



|t/2|∑
s=1

(1− α)2(s−1)C2(t−s)z4
t−s


+σ4

0α
2

T∑
t=2

t




t−1∑

s=|t/2|+1

(1− α)2(s−1)C2(t−s)z4
t−s




≤ σ4
0α

2

T∑
t=2

t Ct



|t/2|∑
s=1

(1− α)2(s−1)z4
t−s


 + σ4

0α
2

T∑
t=2

t (1− α)t




t−1∑

s=|t/2|+1

C2(t−s)z4
t−s




≤ σ4
0α

2

T∑
t=2

t Ct

(
t−1∑
s=1

z4
t−s

)
+ σ4

0α
2

T∑
t=2

t (1− α)t

(
t−1∑
s=1

z4
t−s

)
≤ 2σ4

0ᾱ
2

T∑
t=2

Bt

(
t−1∑
s=1

z4
t−s

)

= 2σ4
0ᾱ

2

T−1∑
t=1

z4
t

(
T∑

s=t+1

Bs

)
≤ 2σ4

0ᾱ
2

1−B

T−1∑
t=1

z4
t B

t+1 ≤ 2σ4
0ᾱ

2

1−B

∞∑
t=1

z4
t B

t+1 < ∞ a.s.

for a constant B satisfying

sup [ (1− α), C] < B < 1

For the second term on the right-hand side of (41)

2α2

T∑
t=K+2

(
t−1∑

s=t−K

(1− α)s−1r2
t−s

)2

≤ ᾱ2 K max1≤s≤K r4
i

T∑
t=K+2

(
t−1∑

s=t−K

(1− α)2(s−1)

)

= ᾱ2 K max1≤s≤Kr4
i

T∑
t=K+2

(1− α)2(t−K−1)

(
K−1∑
s=0

(1− α)2s

)

≤ ᾱ2 K max1≤s≤K r4
i

( ∞∑
t=0

(1− α)2t

)2

= K max1≤s≤K r4
i

(
ᾱ

1− (1− α)2

)2

< ∞ a.s.
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Finally, collecting terms

sup
α∈[α,ᾱ]

2

T

T∑
t=2

σ4
t (α) = O

(
1

T

)
a.s. for T →∞. 2

(b)

E(MSET (α) | σ2
0) = T−1

T∑
t=1

(
E(r4

t | σ2
0) + E(σ4

t (α) | σ2
0)− 2E(r2

t σ
2
t (α) | σ2

0)
)
.

Easy calculations yield
E(r4

t | σ2
0) = σ4

0δ
t
0

setting
δ0 := E(1− α0 + α0z

2
t )

2.

Next

E(σ4
t (α) | σ2

0)

= α2

t−1∑
j=1

(1− α)2(j−1)E(r4
t−j | σ2

0) + 2α2

t−2∑
j2=1

(1− α)j2−1

t−1∑
j1=j2+1

(1− α)j1−1E(r2
t−j1

r2
t−j2

| σ2
0)

= σ4
0α

2

t−1∑
j=1

(1− α)2(j−1)δt−j
0 + 2σ4

0α
2κ0

t−2∑
j2=1

(1− α)j2−1

t−1∑
j1=j2+1

(1− α)j1−1δt−j1
0

setting
κ0 := E(1− α0 + α0z

2
t )z

2
t ,

and

E(r2
t σ

2
t (α) | σ2

0) = κ0α

t−1∑
j=1

(1− α)(j−1)δt−j
0 .

Tedious calculations yield

E(r4
t | σ2

0) + E(σ4
t (α) | σ2

0)− 2E(r2
t σ

2
t (α) | σ2

0) = δt
0ct(α),

where the sequence of positive constants ct(α) satisfy ct(α) → c(α) < ∞ as t →
∞, setting

c(α) =

(
1 +

α2

(δ0 − (1− α)2)
+

2α2κ0(1− α)

(δ0 − (1− α))(δ0 − (1− α)2)
− 2ακ0

(δ0 − (1− α))

)
.
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Note that ct(α), c(α) depend also on δ0, κ0 but we are not making this explicit
for simplicity. By simple manipulations, noting that δ0 = 1+α2

0(µ4−1), κ0 =
1 + α0(µ4 − 1) for µ4 := Ez4

0 , one gets

c(α) =
α(µ4 − 1)2

(δ0 − (1− α)2)(δ0 − (1− α))
,

implying
inf

α∈[α,ᾱ]
c(α) = c > 0.

Hence (18) easily follows since δ0 > 1. 2
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Table 1: univariate estimation of α0

ω0 = 0 (LSE) ω0 = 1 (PMLE)

Value Mean Stand. Dev. Maximum Minimum Obj. fun. Value Mean Stand. Dev. Maximum Minimum Obj. fun.

T = 1, 000

0.05 0.2121 0.2275 0.9616 0 2.5017 0.05 0.0503 0.0197 0.1091 0 2.2072
0.75 0.7419 0.1660 0.9387 0.0251 101.137 0.75 0.7494 0.0202 0.8077 0.6864 4.5885
0.95 0.9525 0.0283 1 0.5 19.78 0.95 0.9510 0.0108 0.9956 0.9185 6.5560

T = 5, 000

0.05 0.3608 0.1617 0.9616 0 0.5004 0.05 0.0495 0.0091 0.0791 0 2.2076
0.75 0.7474 0.1482 0.9388 0.0635 20.2274 0.75 0.7495 0.0093 0.7768 0.7192 4.6318
0.95 0.9519 0.0300 0.9809 0.5 69.5787 0.95 0.9499 0.0044 0.9678 0.9332 7.3530

T = 15, 000

0.05 0.5116 0.1081 0.9616 0 0.1668 0.05 0.0500 0.0056 0.0643 0 2.2078
0.75 0.7347 0.1524 0.9388 0.2377 6.7082 0.75 0.7500 0.0052 0.7640 0.7297 4.6430
0.95 0.9528 0.0226 0.9809 0.5 28.4408 0.95 0.9501 0.0025 0.9580 0.9422 7.5519
Obj. func. is the average (across 1000 replications) of MSE (13) for LS estimator and of Gaussian

log likelihood (20) for PMLE.
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Table 2: Testing predictive accuracy (univariate)

1
260

∑260
t=p+1

∣∣∣σ2
t − σ̂2

t|t−p

∣∣∣
1
2 1

260

∑260
t=p+1

(
ln(σ̂2

t|t−p) + σ2
t

σ̂2
t|t−p

)

σ̂2,lse
0 (α) α̂lse

T α̂pmle
T p: 1 5 20 120 1 5 20 120

0.1 0.881 0.851 0.829 1.476 1.958 8.885 -0.913 -0.957 -0.389 2.645
0.5 0.512 ” -5.103 -2.319 -0.257 4.334 -4.275 -3.595 -2.239 -0.219
1 0.307 ” -4.478 -7.474 -0.895 3.906 -2.916 -3.041 -3.408 -1.087

0.226 0.491 ” -5.067 -2.502 -0.313 4.207 -4.455 -3.446 -2.443 -0.313
s2 0.94 ” 0.067 0.527 1.824 9.791 1.288 0.387 0.549 4.913

s2, n = 15 0.94 ” 0.684 0.684 0.816 5.227 -0.496 -0.551 -0.583 -0.369
s2, n = 30 0.94 ” 0.783 2.026 1.980 6.415 -0.553 -1.339 0.106 2.459

Columns 4 to 11 report the Diebold and Mariano (21) test statistic. Columns 1 and 2 report

the average (across 260 replications) of the LS estimates of σ2
0 , α0. Column 3 reports the average

of the PMLE of α0 (the average of the PMLE of ω0 is 9× 10−7).

s2 indicates the sample covariance matrix of the data and n is the time-window (in days).
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Table 3: Testing predictive accuracy (bivariate)

1
258

∑258
t=p+1

(
e(11),t + e(22),t + e(12),t

)
1

258

∑258
t=p+1

∣∣ρ12,t − ρ̂12,t|t−p

∣∣

e(i),t =
∣∣∣σ2

t(i) − σ̂2
t(i)|t−p

∣∣∣
1
2

ρ̂12,t|t−p =
σ̂2

t(12)|t−p

σ̂t(11)|t−pσ̂t(22)|t−p

σ̃2
0(α) α̃T α̂pmle

T p: 1 5 20 120 1 5 20 120

0.1 0.881 0.859 0.487 0.816 4.125 8.501 1.01 0.877 -0.125 0.674
0.5 0.512 ” -5.281 -2.662 -0.216 4.810 -6.543 -7.308 -5.979 -8.938
1 0.307 ” -7.269 -4.939 -0.688 4.283 -8.244 -8.605 -7.732 -8.171

0.226 0.491 ” -5.431 -2.812 -0.287 4.689 -6.675 -7.303 -6.141 -8.861
s2 0.94 ” 0.635 1.023 4.245 8.645 1.078 0.731 -0.341 0.402

s2, n = 15 0.94 ” -0.490 1.209 1.316 7.097 -3.563 -2.710 -1.873 -0.838
s2, n = 30 0.94 ” 0.648 1.351 2.832 8.347 0.271 -0.177 -0.857 -0.048

Columns 4 to 11 report the Diebold and Mariano (21) test statistic. Columns 1 and 2 report

the average (across 258 replications) of the LS estimates of σ2
0 , α0. Column 3 reports the average

of the PMLE of α0 (the average of the PMLE of Ω0 = (ω0,1, ω0,12, ω0,2) is (9× 10−7, 3× 10−7, 10× 10−7)).

s2 indicates the sample covariance matrix of the data and n is the time-window (in days).
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Table 4: Testing predictive accuracy (multivariate)

DCC(r, s, 1, 1) ADCC(r, s, 1, 1)
p: 1 5 20 120 1 5 20 120

r = 1, s = 1 -6.547 -4.939 -5.510 -5.710 -5.549 -5.568 -6.2549 -5.954
r = 2, s = 1 -6.151 -4.3277 -5.005 -5.033 -4.078 -5.641 -6.318 -5.973
r = 1, s = 2 -6.880 -4.313 -4.987 -5.099 -6.423 -5.919 -6.566 -6.242
r = 2, s = 2 -6.201 -4.280 -4.972 -4.911 -5.073 -6.556 -7.125 -6.485

Columns 2 to 9 report the Diebold and Mariano (21) test statistic based on the loss function
1

507−p

P507
t=p+1 ι′ | vech(Σt|t−p − rtr′t) |

1
2 , ι = (1, ..., 1)′.

Columns 2-5 report the result for DCC(p, q, 1, 1) and columns 6-9 for ADCC(p, q, 1, 1),

both with respect to the common approach with λ0 = 0.94, n = 250 and initialized at s2.

All models are estimated recursively with an expanding window starting with 1784 observations

as the first estimation sample, with the parameter values updated at monthly intervals.
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