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Abstract

The existence of an intra-day seasonality component in financial market variables (volatil-

ity, volume, activity, etc.), has been highlighted in many previous studies. To adjust raw data

for their cyclical component, many researchers start by using the intra-day average observa-

tions model (IAOM) and/or some smoothing techniques (e.g. the kernel method) in order to

remove the day-of-the-week effect. When the seasonality involves only a deterministic compo-

nent, the IAOM method succeeded in estimating the periodicity almost perfectly. However,

when the seasonality contains both deterministic and stochastic components (e.g. closed

days), both IAOM and the kernel method fail to capture it. We introduce self-organizing

maps (SOM) as a solution. SOM are based on neural network learning and nonlinear pro-

jections. Their flexibility allows seasonality to be captured even in the presence of stochastic

cycles.
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1 Introduction

Evidence of intra-day seasonality in financial market behaviors has been highlighted in many pre-

vious studies and concerning many microstructure variables (e.g. volatility and quoting activity).

Two categories of methods are most often used to remove this seasonality. Some studies (such

as Degennaro and Shrieves, 1997, Andersen and Bollerslev, 1998, Melvin and Yin, 2000, Cai,

Cheung, Lee, and Melvin, 2001, Bauwens, Ben Omrane, and Giot, 2005, and Ben Omrane and

Heinen, 2004) adopt a linear projection technique. They regress variables (affected by the seasonal

component) on a set of dummy variables (or flexible Fourier forms) in order to capture intra-day

cycles. Other authors adjust the raw data for seasonality using a direct correction factor obtained

from intra-day averages (Dacorogna, Müller, Nagler, Olsen, and Pictet, 1993, Eddelbuttel and

McCurdy, 1998, Melvin and Yin, 2000, and Bauwens, Ben Omrane, and Giot, 2005 ) or a smooth-

ing kernel (Engle and Russell, 1998, Bauwens and Giot, 2000, and Veredas, Rodriguez-Poo, and

Espasa, 2002).

Our research builds on previous literature to explore the limits of the classical approaches

and to introduce a solution for stochastic cycles. We show that the more the raw data involves

a deterministic seasonality, the more the classical methods, particularly the intra-day average

observations model, succeed in estimating the cycles. However, in the presence of stochastic

cycles (or the combination of deterministic and stochastic cycles), such as those generated by

closed days (among others), classical methods reveal their limits. We introduce a method based

on the self-organizing maps algorithm (Kohonen, 1995). Self-organizing maps (SOM) allow both

deterministic and stochastic cyclical components to be captured.

Our evidence is based both on Monte Carlo simulations and on application to a real data

set (taken from the foreign exchange (FX) market). Our Monte Carlo simulations adopted a

five-step framework. We began by generating an auto-regressive process. We then simulated

either a deterministic seasonality, or both deterministic and stochastic cycles which we added

to the auto-regressive variable. After that we deseasonalized the endogenous variable, using the

three methods cited above. We finally re-estimated the process coefficients on the deseasonalized
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data series. The better the deseasonalization, the closer the estimated coefficient should be to

the simulated one, and the lower the root mean square error (RMSE) should be. This allows

us to compare the performance of our methods in a controlled setup. For our empirical study

we used a high frequency data set of 5-minute regularly time-spaced Euro/Dollar quotes. The

time period stretched from May 15, 2001 through May 15, 2002. Our results confirm that in

the presence of both deterministic and stochastic cycles, the SOM method is more powerful at

neutralizing the seasonality than either the intra-day average observations model (IAOM) or the

Nadaraya-Watson kernel smoothing method. We based our comparison on an analysis of the

autoregressive correlation function (ACF) of the deseasonalized variables. In this way, the quality

of the adjustments is inferred from the persistence of the cycles in the ACF. Our results are

consistent with the Monte Carlo simulation results.

This paper is divided into six sections. In Section 2 we present a brief review of literature

related to intra-day seasonality (focusing on the FX market because we use it as the empirical

setting in Section 5). We detail our deseasonalization methods in Section 3. The Monte Carlo

simulation is presented in Section 4, and Section 5 describes the empirical application. Section 6

summarizes our conclusions.

2 Foreign Exchange Seasonality

A large segment of the foreign exchange microstructure literature documents that market opening

and closing, news announcements and days of the week introduce significant cyclical factors into

many microstructure variables such as volatility and quoting activity (Bollerslev and Domowitz,

1993, Andersen and Bollerslev, 1996, Degennaro and Shrieves, 1997, Melvin and Yin, 2000, and

Ben Omrane and Heinen, 2004). A typical case is highlighted by Andersen and Bollerslev (1998)

and Bauwens, Ben Omrane, and Giot (2005) who show that scheduled news announcements have

a seasonal impact on volatility. These news events exhibit both a cyclical and a stochastic compo-

nent, the latter being the news content not fully anticipated by the market participants. However,

the cyclical news component could itself be either deterministic or stochastic, since the timing of
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some announcements changes from one week to the next.

A number of methods have recently been put forward in the literature to capture this cyclical

behavior in high frequency data. Melvin and Yin (2000) and Bauwens, Ben Omrane, and Giot

(2005), inter alia, use the intra-day average observations model (IAOM)1 to adjust volatility and

quoting activity variables for seasonality. They divide returns (quoting activity) by the square

root of the cross sectional average volatility (cross sectional average quoting activity) to clean the

series from its cyclical components (see Section 3.2). The more the data involve a deterministic

seasonality,2 the more the IAOM is successful in removing the seasonality. Degennaro and Shrieves

(1997) use dummy variables to identify ’hour of the day’ cyclical effects, but they do not discrim-

inate between different days of the week. On the other hand Andersen and Bollerslev (1998) and

Bauwens, Ben Omrane, and Giot (2005) show that workdays are characterized by specific cyclical

behaviors. To deseasonalize volatility, they therefore allow for a specific seasonality for each day

of the week (although they assume that the day of the week effect is constant from week to week).

On the same topic, Andersen and Bollerslev (1998), Cai, Cheung, Lee, and Melvin (2001) and

Ben Omrane and Heinen (2004) use the flexible Fourier form (a sum of sinusoids) to capture intra-

day cycles. Dacorogna, Müller, Nagler, Olsen, and Pictet (1993) and Eddelbuttel and McCurdy

(1998) deseasonalize volatility using an adjustment factor. This factor is proportional to the

(mean) absolute value of the returns over a time interval divided by the size of the time interval.

Engle and Russell (1998) and Bauwens and Giot (2000) adjust duration variables for seasonality

using the cubic splines technique, but Veredas, Rodriguez-Poo, and Espasa (2002) adopt the kernel

estimator to adjust duration and show that their method is more effective than the cubic splines.

To sum up, there are two broad categories of seasonality adjustment methods used in the liter-

ature. The first is a one-step procedure and consists of removing seasonality through a regression.

Seasonality is captured through some added variables (such as dummies or the flexible Fourier

form). The second category is a two-step procedure: before implementing the regression, the raw

data is adjusted for seasonality; then the adjusted variable is regressed onto the set of exogenous
1This method is equivalent to one based on hourly dummy variables.
2Deterministic seasonality corresponds to continual cycles without gaps or discontinuities generated by, for

instance, closed days
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variables. In this study we focus on the seasonality-removal part of the procedure. We compare

both the IAOM and the kernel methods to a new type of algorithm: self-organizing maps (SOM)

introduced by Kohonen (1995). This algorithm has lead to many applications in physics and en-

gineering as well as in finance (see, inter alia, de Bodt, Cottrell, Henrion, and Van Wijmeersch,

1998, de Bodt, Lendasse, Cardon, and Verleysen, 2004, and DeBoeck and Kohonen, 1998). The

SOM model is based on neural network learning and nonlinear discrete projection (see Section

3.1). As show below, the SOM algorithm allows us to deal with the stochastic component of the

seasonality.

3 Deseasonalization Methods

In this section we present the three seasonality identification methods. We start with a presentation

of the SOM algorithm as its usage is the key contribution of this study. We then review the well

known IAOM and kernel smoothing approaches. For a more convenient presentation of the details

of the different method we use some examples picked from either the simulated or the real data

series.

3.1 The Self-Organizing Maps Model (SOM(p,q))

The self-organizing maps (SOM) method introduced by Kohonen (1995) is a method of data

analysis which allows, through a (discrete) projection, the dimensions of the data space to be

reduced (as principle component analysis methods do). Simultaneously it allows, through vector

quantization, the data being summarized to be projected in specific mean profiles. The projection

step is carried out on a discrete data space.

Before turning to a more formal presentation of the SOM algorithm, we will introduce it with

an example. Imagine that we are faced with a two dimensional data matrix such as the one

presented in Table 1. There are 21 observations and, for each observation, two measures have

been taken (e.g., the size and the weight). Figure 1 Panel A shows the two-dimensional input

data space (each observation being represented by a dot). Three natural clusters clearly emerge.

The two situated on the left are closer to each other than to the one situated on the right of

4



the chart. We use a self-organizing map (SOM) both to capture the proximity relations among

clusters and to summarize (quantify) the information contained in each cluster. Our map is shown

in Figure 1 Panel B. It is a SOM(2,2) - that is to say it is composed of two rows and two columns

(four nodes). Each node is identified by its location in the map (the row and column indices). A

vector of coordinates is associated to each node. This vector defines the location of the node in the

input space. Figure 1 Panel C displays the locations of the four nodes after random initialization of

their coordinates’ vectors. In technical terms, the map is said to be folded: the proximity relations

among the nodes in the map do not reflect the proximity relations in the input space. In the input

space, the node (1,1) is closer than the node (1,2) to the node (2,2), while this is not the case in

the map. Moreover, the locations of the nodes bear no relation to the clusters of data. The SOM

algorithm is the numerical procedure by which the map is unfolded and displaced towards the data

clusters (Figure 1 Panel D). After this, if everything goes right, the neighborhood relations in the

map correspond to those observed in the input space. The node coordinates’ vectors represent

homogeneous clusters of data (as here for nodes (1,1), (2,2) and (2,1), although not (1,2)). Note

that in the present case, in order to allow a visual representation of the process, we have used a

projection of the two-dimensional input space onto a two-dimensional map. In real applications,

the dimensions of the input space are usually far higher and the two dimensional map provides

a convenient way of observing the neighborhoods relation among clusters of individuals. Nothing

forbids the use of higher dimensional maps except that visual representation then becomes difficult

(if not impossible).

In more formal terms, SOM defines a mapping from the input data space Ω, onto a K-

dimensional array of output nodes. In order to visualize the outputs, K must not to be above two

(a grid). If x represents one observation, then let x ∈ Ω be a stochastic data vector. A vector

quantization ϕ is an application from the continuous space Ω, endowed with some probability

density function f(x), to a finite subset F composed of the n nodes m1, . . . , mn. These nodes,

which are located at specific points on the map, are associated to a coordinate vector, which will,

after learning, represent the average profile of observations associated with a specific node. After
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unfolding the position of a node is a result of the neighborhood structure of the data in the input

space. The SOM algorithm is defined as follows:

• the structure of the map is first defined (number of rows (p) and columns (q));

• the coordinate vectors of the nodes m1, . . . , mn are randomly initialized (in the input space);

• each node occupies a specific location in the map;

• at each iteration t of the algorithm:

– an observation x is randomly drawn according to the density f(x),

– the ’winning’ node mk∗,t is identified by minimizing the classical Euclidean norm:

‖xi −mk∗,t‖ = min
k
‖xi −mk,t‖ (1)

– the class mk∗ and its neighbors in the map are updated by

mk∗,t+1 = mk∗,t + εt(xi − mk∗,t), (2)

where εt is an adaptation parameter which satisfies the Robbins and Monro (1951)

conditions (
∑

εt = ∞ and
∑

ε2
t < ∞). Note that the set of the neighbors adapted

at each iteration can either be kept fixed or progressively decreased throughout the

procedure.

The iteration or ’learning’ process combines a projection and a quantization. Nodes begin by

being distant from each other and then converge gradually to the barycenter of the clusters of

observations. At the end of the learning process, their coordinate vectors represent the ’average

individual’ of a cluster of observations. The adaptation parameter, εt (also called the learning

coefficient), drops progressively. At the starting of the learning, nodes are moved by large steps

in order to bring them closer to their convergence zone, and then their positions are progressively

computed with more precision. Once learning has been achieved, each observation i is attached

to its winning node mk∗,t, identified by its map coordinates. This correspondence is a kind of

projection on a discrete subspace.
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In our empirical study (Section 5), Ω is the data matrix containing the number of trading

days during the year (258) in its rows, and the number of five-minute observations (288) in its

columns. The seasonality is captured by the value of the node coordinate vector after learning.

The deseasonalization is achieved through a two-step process. Each observation is attached to a

winning node, and then, to adjust the observation for seasonality, we divide it by (or subtract

it from) the mean profile for the corresponding winning class. We implement the division or

subtraction according to how the cyclical component is involved in the raw data. For instance,

volatility and quoting activity have to be adjusted for seasonality by division. However, both the

simulated AR(P) processes (yt and zt), computed in Section 4 have to be subtracted from the

cyclical component.

Finally, note that selecting a given map structure (number of rows (p) and number of columns

(q)) is a trial and error process. The autoregressive correlation function (ACF) is a convenient

guidance tool for selecting the right number of lags within an ARMA(p,q) model.

3.2 The Intra-Day Average Observations Model (IAOM )

To estimate seasonality, we computed the intra-day average observations at time nk of day k

(called mvnk
). We divide each day into Q intervals of time. We assume for simplicity that we

have exactly S weeks of data. For each interval endpoint per day of the week over the S week

period, we had one observation for the random variable, Y . We thus compute in principle Q values

mvnk
for each day of the week, making a total of W (5×Q) values over a week. Formally,

mvnk
=

1
S

S∑
s=1

Yf(s,k,nk), (3)

where

f(s, k, nk) = W (s− 1) +
k−1∑

j=1

Nj + nk, (4)

s = 1, . . . , S. k = 1, . . . , 5. N1 = N2 = N3 = N4 = N5 = Q. n1 = 1, . . . , Q and similarly for

n2, n3, n4 and n5.

To adjust the different variables for seasonality, we used the same methodology as for the

SOM adjustment. We just divided/subtracted the endpoint of each five-minute interval by/from
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the corresponding value of the intra-day average observation. This means, for example, that all

quoting activities at 12.00 on Thursday in the sample were divided by the same value (the average

quoting activity at 12.00 on Thursdays).

3.3 The Smoothing Method

The smoothing method consists of smoothing the raw data using the Nadaraya-Watson kernel

estimator and then adjusting each raw observation by the corresponding value on the smoothed

curve. The adjustment is made in the same way as for the SOM and IAOM methods. The

Nadaraya-Watson kernel estimator Ŷt of Y (t) is:

Ŷt =

∑T
j=1 Kh(t− tj)Yt∑T

j=1 Kh(t− tj)
. (5)

where t is the vector of time, T corresponds to the number of observations, and h is the

bandwidth parameter. Choosing the appropriate bandwidth is an important aspect of any local-

averaging technique. In our case we selected a Gaussian kernel with a bandwidth, h, as computed

by Silverman (1986):

Kh(x) =
1

h
√

2π
e−

x2

2h2 (6)

h =
(4

3

)1/5

σk l−1/5, (7)

where σk is the standard deviation for the observations.

4 Monte Carlo Simulation

4.1 Simulation Procedure

In order to compare the three seasonality identification methods (IAOM, SOM, NW-kernel) we

implemented a five-step simulation procedure.
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1) We start by generating a P-lag autoregressive process, y∗t , (AR(P), P = 1, 5):

y∗t =
P∑

p=1

βpy
∗
t−p + εt, (8)

where β equals 0.95 if P = 1, and, if P = 5, β1 = 0.5, β2 = 0.09, β3 = 0.08, β4 = 0.07, and

β5 = 0.06. εt has a standard normal distribution.

2) We partitioned y∗t by blocks of Q observations, each representing one day of the week.

3) We simulated a deterministic seasonality Sdet
t,i and we added it to the AR(P) process described

above, so that

yt,i = y∗t,i + Sdet
t,i . (9)

If y∗t,i represents one such block, where i is an index corresponding to the trading days of the week

(i = 1, . . . , 5), then Sdet
t,i is generated by the following procedure. The block of y∗t,i observations,

corresponding to each day of the week, is divided into three periods (say, the morning, noon, and

the afternoon). Then, a defined constant is added to the AR(P) process depending on the specific

time period in which the observation is located. One set of constants is chosen for each day of

the week, since we generate a deterministic weekly cycle (seasonality). In this way, yt becomes an

autoregressive variable which involves a deterministic seasonality.

To simulate an AR(P) process which contains stochastic seasonality in addition to the deter-

ministic one, we used the following procedure:

• we generated an AR(P) process:

z∗t =
P∑

p=1

βpz
∗
t−p + εt, (10)

• we added a deterministic and stochastic seasonality to this process:

zt,i = z∗t,i + Sdet
t,i + Ssto

t,i , (11)

where Sdet
t,i is generated as described above, and Ssto

t,i is the stochastic seasonality. The difference

between these two seasonalities depends on the manner in which constants are added to the time
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periods of weekdays. For stochastic seasonality, days were selected randomly to the subject of

added variation. Moreover, the variation changes from week to week.

4) The fourth step consists of estimating and removing seasonality from two simulated processes

(yt and zt) using the IAOM, NW-kernel and SOM methods. The deseasonalization methodology

consists of using a linear subtraction of the estimated seasonalities, φdet
t and φsto

t respectively,

from the analyzed variables yt and zt, such that:

y
′
t = yt − φdet

t , (12)

z
′
t = zt − φsto

t . (13)

5) Finally, we estimated both AR(P) processes, based on their respective deseasonalized vari-

ables, using ordinary least square estimation:

y
′
t =

P∑
p=1

β
′
py

′
t−p + ε

′
t, (14)

z
′
t =

P∑
p=1

γ
′
pz
′
t−p + ν

′
t. (15)

The whole procedure was iterated 1000 times. To assess the performance in terms of seasonality

adjustment of each of the three methods, we computed the root mean square error (RMSE) of the

estimated coefficients β
′
p and γ

′
p relative to the initially simulated βp. The closer the estimated

coefficients were to βp, the lower the RMSE and better the seasonality adjustment. It is worth

pointing out that the SOM algorithm was initialized with the IAOM outputs (which in practice,

seems to have been a judicious choice).

4.2 Results

Estimation results for the Monte Carlo simulation are presented in Tables 2 and 3. Table 2 displays

the estimation results for AR(1) and Table 3 presents those of AR(5) process. In both tables Panel

A displays the mean, standard deviation, and RMSE for 1000 iterations of the autoregressive

coefficient for Equation (14) in the presence of deterministic seasonality. Panel B illustrates

the same results for the stochastic seasonality (Equation (15)). The variables, in this case, are
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deseasonalized from both their deterministic and their stochastic seasonality. The RMSE in both

panels characterizes the estimation error generated by the added seasonality.

Starting with the results for deterministic seasonality, the estimated coefficients for the non-

deseasonalized autoregressive parameters corresponding to Equations (14) and (15) (see the second

column of Tables 2 and 3) show a higher level of error in Panel B than in Panel A. The more

seasonality there is in the process, the larger is the error in the estimated coefficients. This is why

previous studies have tried to remove the cyclical component from their microstructure variables.

The IAOM deseasonalization displays interesting results in Panel A. The estimated coefficients

are very close to the simulated ones, with an insignificant error equal to 0.09% for AR(1) and

around 0.33% for the different coefficients of the AR(5). We conclude that the IAOM method

succeeds in capturing almost the whole of the deterministic seasonality component. The IAOM

method can therefore be recommended as an effective tool for seasonality adjustment when the

cyclical component is strictly deterministic. This means that the time series should not include

gaps due to missing values (due, for example, to closed days or data recording problems). Panel

B presents very different results. In the presence of stochastic cycles, the IAOM method has a

significant level of estimation error. The corresponding RMSE is much higher than that obtained

by estimating the model with deterministic seasonality. When the seasonality involves both deter-

ministic and stochastic elements, the IAOM does not even capture the whole cyclical component

of the process. This suggest that, when there are good reasons to think that the seasonality could

display some stochastic behavior, the IAOM approach should not be used.

The SOM method seems to be far more robust in the presence of stochastic cycles. Panel

B of Tables 2 and 3 exhibits, in the third column, the estimation result for the seasonality ad-

justed AR(1) and AR(5) processes respectively. The corresponding RMSE is low compared to

the IAOM case. Unlike the IAOM method, SOM(1,5) succeeds in capturing seasonality involving

both deterministic and stochastic cycles. The results in Panel A show that SOM(1,5) is, however,

less efficient than the IAOM method when the seasonality involves only deterministic cycles. In

such a case, the estimation error generated by SOM(1,5) is much higher than that generated by
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the IAOM method. The choice between IAOM and SOM therefore depends on the presence of

stochastic cycles.

The kernel results displayed in Table 2, Panel A, show that this method captures deterministic

seasonality with a low error level. This finding is consistent with previous research which opted

for the kernel method as a step in the deseasonalization process, particularly when the samples

exhibited some deterministic cycles. However, the kernel adjustment is less accurate than IAOM.

Nevertheless, Table 3, Panel A displays a higher RMSE for the kernel method, especially for the

first three coefficients of the AR(5). Panel B results for Tables 2 and 3 show that the kernel

method generates an estimation error level much higher than that generated by SOM and IAOM,

but smaller than the non-adjusted data.

These findings are consistent with intuition. By construction, the IAOM method, built on the

computation of cross-sectional means, can easily capture deterministic seasonality. The IAOM

algorithm relies on the law of large numbers: the deterministic component estimation amounts to

an estimation of the expected value of the hour-by-hour cycle by its sample average. The SOM

algorithm and kernel methods can also capture deterministic cycles, but much less efficiently than

the IAOM. However, when cycle irregularities are present (as often occurs in financial data), using

the hour-by-hour sample average to capture the seasonality becomes problematic. The SOM model

goes beyond the limits of the IAOM and kernel models. It estimates, efficiently, seasonality which

contains both deterministic and stochastic cycles.

5 Empirical Evidence

5.1 Data Description

In this section we use the same data set as that used by Bauwens, Ben Omrane, and Giot (2005).

The data chosen are two microstructure variables (volatility and quoting activity) from the cur-

rency market. The euro/dollar foreign exchange market is a market-maker based trading system,

where three types of market participants interact around the clock (i.e. in successive time zones):

the dealers, the brokers and the customers from whom the primary order flow originates. The
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most active trading centers are New York, London, Frankfurt, Sydney, Tokyo and Hong Kong. A

complete description of the FX market is given by Lyons (2001).

To compute the returns used to estimate the volatility, we use the Olsen and Associates

database made up of ’tick-by-tick’ euro/dollar quotes for the period ranging from May 15, 2001 to

May 15, 2002 (i.e. one year). It is worth pointing out that our sample involves five closed days.3

This database includes 6,088,382 observations. As in most empirical studies on FX data, the

euro/dollar quotes are market makers’ quotes and not transaction quotes (which are not widely

available).4 More specifically, the database contains the date, the time-of-day time stamped to the

second in Greenwich mean time (GMT), the dealer bid and ask quotes, the identification codes

for the country, city and market-maker bank, and a return code indicating the filter status. Ac-

cording to Dacorogna, Müller, Nagler, Olsen, and Pictet (1993), when trading activity is intense,

some quotes are not entered into the electronic system. If traders are too busy or the system is

running at full capacity, quotations displayed in the electronic system may lag prices by between

a few seconds and one or more minutes. We retained only the quotes that have a filter code value

greater than 0.85.5

From the tick data, we computed mid-quote prices, where the mid-quote is the average of the

bid and ask prices. As we used five-minute returns, we obtained a daily grid of 288 points. At the

end of each interval, we used the closest previous and next mid-quotes to compute the relevant

prices by interpolation. The mid-quotes were weighted by their inverse relative time distance to

the interval endpoint. The return at time t was then computed as the difference between the

logarithms of the interpolated prices at times t − 1 and t, multiplied by 10,000 to avoid small

values. Volatility was computed as the square of returns.

Because of scarce trading activity during the week-ends, we excluded all returns computed
3The dates of the closed days are 25 and 26 December 2001, 1 January, 18 April and 1 May 2002.
4Danielsson and Payne (2002) show that the statistical properties of 5-minute dollar/DM quotes are similar to

those of transaction quotes.
5Olsen and Associates recently changed the structure of their high frequency (HF) database. While they used to

provide a 0/1 filter indicator (for example in the 1993 database), they now provide a continuous indicator that lies
between 0 (worst quote quality) and 1 (best quote quality). Despite a value larger than 0.5 is deemed acceptable
by Olsen and Associates, we chose a 0.85 threshold to ensure high quality data. in practice we removed virtually
no data records (Olsen and Associates supplied us with data which had already been filtered at 0.5), as most filter
values are very close to 1.
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between Friday 21.30 and Sunday 24.00. In addition, we excluded the first return on each Monday

and of each day following a closed day (other than week-ends) to avoid possible biases due to

the lack of activity during the week-ends and closed days. We took the daylight saving time

adjustment into consideration to account for the time changes (to winter and summer time) that

occurred on October 29, 2001 and March 25, 2002. This affected GMT hours between 6.00 and

21.00 (corresponding to market times in Europe and the USA). As well as return volatility, a

second important variable is quoting activity. FX quoting activity, measured by the number of

quotes in five-minute time intervals, is often considered as a proxy for volatility and/or as a proxy

for private information. Adjustments for week-ends and holidays were computed in the same way

as for returns. The total number of observations for volatility and quoting activity was 72,675.

Table 4 presents summary statistics for the euro/dollar returns and quoting activity. The mean

of the returns is almost equal to zero, although their distribution has fatter tails than the normal

distribution and features a positive skewness coefficient. The quoting activity mean and standard

deviation are relatively high. Its distribution is less leptokurtic than that of the returns, but much

more asymmetric.

5.2 Results

Our empirical results based on FX volatility and quoting activity rely on the ACF analysis of the

adjusted data. The presence of closed days generates a discontinuity in cycles, being the source of

both stochastic seasonality.

Figure 2 illustrates the ACF for both deseasonalized volatility and deseasonalized quoting

activity. The seasonality adjustment was done by the IAOM method. It is clear that, despite

the adjustment, cycles remain in the series, particularly in quoting activity. Figure 3 displays the

ACF for the same variables, adjusted by the kernel method. The cycles for volatility persist but

are less pronounced than in the previous figure. Figure 4 shows an ACF from which the cycles

have been almost completely removed. This was achieved by adjusting the volatility through a

SOM(2,5) and the quoting activity by SOM(6,6).
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Table 5 shows the mean, standard deviation and autocorrelation coefficient (AC) computed

with one-day, two-days and three-day lags. The idea is to quantify the peaks in the different ACF

cycles in order to simplify the comparison. The ACs corresponding to the different adjustment

method are consistent with the figures. These results are consistent with the known features of

our sample in terms of the discontinuity of the cycles involved. The SOM model is more efficient

than the IAOM or the kernel models in term of seasonality adjustment, particularly when the

seasonality has both deterministic and stochastic components.

6 Conclusion

This paper has focused on three seasonality identification methods: the self-organizing maps al-

gorithm (SOM), the intra-day average observation method (IAOM) and the Nadaraya-Watson

kernel method. The IAOM and the kernel methods have appeared in the literature before. We

introduced the SOM algorithm in order to overcome some of their shortcomings. We studied

the ability of each method to capture cycles involving deterministic and stochastic components.

We implemented a Monte Carlo simulation in which we generated AR(1) and AR(5) processes

infected by a seasonality involving both deterministic and stochastic cycles. Then, we captured

and removed the cycles using each of the three methods. This allowed us to estimate the desea-

sonalization process and to compute and compare the estimation errors each one generate. In

addition we used the three seasonality identification methods to capture and remove the cyclical

components of two microstructure FX variables: volatility and quoting activity for the 5-minute

euro/dollar currency quotes in the period from May 15, 2001 to May 15, 2002. The simulation

results show that:

1. the IAOM model is much more efficient than the kernel or SOM methods when the seasonality

contains only deterministic cycles;

2. when the seasonality involves both deterministic and stochastic cycles, the SOM model out-

performs the other methods in capturing and identifying seasonality.
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The empirical results for the real financial data yielded results consistent with those obtained

from the simulations. The real data sample contained five closed days which triggered disconti-

nuities and stochastic cycles. This explains, inter alia, why the SOM method outperformed the

IAOM and kernel methods at identifying seasonality in the real data.
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Table 1: Input data for self-organizing maps: example observations

observations Xi Yi
1 18 46
3 21 47
4 19.5 53
5 20 52
6 18 51
7 20 45
8 5 12
9 6 16
10 5.5 5
11 6.7 8
12 4.9 10
13 6.1 9
14 7 13
15 5 52
16 6 56
17 5.5 45
18 6.7 48
19 4.9 50
20 6.1 49
21 7 55

Table 2: Estimation results for the AR(1) process with seasonality

y
′
t = β

′
y
′
t−1 + ε

′
t,

z
′
t = γ

′
z
′
t−1 + ν

′
t.

Non-Deseas. Deseas. IAOM Deseas. SOM(1,5) Deseas. Kernel
Panel A (deterministic seasonality)

β
′

0.9596 0.9499 0.9433 0.9510
σ 0.10% 0.07% 0.12% 0.12%
RMSE 0.96% 0.09% 0.67% 0.14%

Panel B (stochastic seasonality)
γ
′

0.9702 0.9672 0.9464 0.9640
σ 0.22% 0.30% 0.12% 0.20%
RMSE 2.02% 1.72% 0.36% 1.40%

y
′
t and z

′
t are two AR(1) processes generated, through the Monte Carlo simulation. β

′
and γ

′
are the means of

the estimated AR(1) coefficients after 1000 simulations. The first column presents the estimated coefficients for
the non-deseasonalized AR(1) process. Columns two to four show the estimated coefficients for the AR(1) process
deseasonalized by the IAOM, SOM(1,5) and kernel methods respectively. RMSE is the root mean square difference
between the estimated coefficient and the simulated one.

19



Figure 1: The self-organizing maps algorithm
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Table 3: Estimation results for the AR(5) processes with seasonality

y
′
t =

∑5
p=1 β

′
py

′
t−p + ε

′
t,

z
′
t =

∑5
p=1 γ

′
pz
′
t−p + ν

′
t.

Non-Deseas. Deseas. IAOM Deseas. SOM(1,5) Deseas. Kernel
Panel A (deterministic seasonality)

β
′
1 0.595 0.500 0.501 0.590

σ 0.35% 0.36% 0.52% 0.35%
RMSE 9.47% 0.29% 0.36% 9.00%
β
′
2 0.114 0.0901 0.0904 0.114

σ 0.42% 0.40% 0.44% 0.38%
RMSE 2.42% 0.33% 0.35% 2.37%
β
′
3 0.091 0.079 0.0802 0.088

σ 0.42% 0.40% 0.43% 0.36%
RMSE 1.09% 0.33% 0.34% 0.84%
β
′
4 0.073 0.070 0.0702 0.072

σ 0.44% 0.42% 0.44% 0.40%
RMSE 0.46% 0.34% 0.35% 0.38%
β
′
5 0.064 0.059 0.0601 0.059

σ 0.38% 0.39% 0.42% 0.38%
RMSE 0.43% 0.31% 0.33% 0.32%

Panel B (stochastic seasonality)
γ
′
1 0.687 0.653 0.516 0.685

σ 2.13% 2.52% 0.61% 2.31%
RMSE 18.66% 15.26% 1.63% 18.49%
γ
′
2 0.114 0.116 0.0904 0.114

σ 0.47% 0.45% 0.47% 0.52%
RMSE 2.35% 2.55% 0.72% 2.37%
γ
′
3 0.077 0.084 0.085 0.077

σ 0.61% 0.61% 0.45% 0.59%
RMSE 0.52% 0.58% 0.59% 0.52%
γ
′
4 0.054 0.062 0.075 0.054

σ 0.67% 0.73% 0.45% 0.70%
RMSE 1.60% 0.89% 0.54% 1.57%
γ
′
5 0.036 0.047 0.067 0.037

σ 0.72% 0.87% 0.42% 0.80%
RMSE 2.41% 1.36% 0.71% 2.34%
See caption of Table 2.
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Figure 2: Volatility and quoting activity deseasonalized by the IAOM

Figure 3: Volatility and quoting activity deseasonalized by the Nadaraya-Watson kernel smoothing
method
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Figure 4: Volatility and quoting activity deseasonalized by SOM(2,5) and SOM(6,6)

Table 4: Moments of the euro/dollar returns and quoting activity

Returns Quoting activity
Mean 0.007 82.31
Standard deviation 3.91 60.11
Skewness coefficient 0.21 1.23
Kurtosis coefficient 15.0 5.43

The 5-minute returns have been pre-multiplied by 10,000 (to
avoid small values). The number of observations is 72,675,
corresponding to the period from May 15, 2001 to May 15,
2002.

Table 5: Moments and autocorrelation coefficient for the euro/dollar deseasonalized volatility and
quoting activity

IAOM IAOM SOM(2,5) SOM(6,6) Kernel Kernel
V QA V QA V QA

µ 0.999 1.000 1.038 0.998 0.918 0.923
σ 2.180 0.554 2.629 0.387 2.045 0.440
ρ288 0.037 0.417 0.037 0.014 0.027 0.461
ρ576 0.032 0.372 0.025 0.006 0.031 0.382
ρ864 0.030 0.320 0.026 -0.017 0.011 0.295

The number of observations is 72,675, corresponding to the period from May 15,
2001 to May 15, 2002. The seasonality adjustments were made by using the SOM
model presented in Section 3.1, the intra-day average observations model (IAOM)
presented in Section 3.2, and the kernel smoothing method detailed in Section 3.3.
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