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1 Introduction 

We will review the econometrics of non-parametric estimation of the components of the 

variation of asset prices. This very active literature has been stimulated by the recent 

advent of complete records of transaction prices, quote data and order books. In our 

view the interaction of the new data sources with new econometric methodology is lead­

ing to a paradigm shift in one of the most important areas in econometrics: volatility 

measurement, modelling and forecasting. 

We will describe this new paradigm which draws together econometrics with arbitrage 

free financial economics theory. Perhaps the two most influential papers in this area 

have been Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and 

Shephard (2002), but many other papers have made important contributions. This work is 

likely to have deep impacts on the econometrics of asset allocation and risk management. 

One of the most challenging problems in this context is dealing with various forms of 

market frictions, which obscure the efficient price from the econometrician. Here we 

briefly discuss how econometricians have been attempting to overcome them. 
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In section 2 we will set out the basis of the econometrics of arbitrage-free price pro­

cesses, focusing on the centrality of quadratic variation. In section 3 we will discuss central 

limit theorems for estimators of the QV process, while in section 4 the role of jumps in 

QV will be highlighted, with bipower and multipower variation being used to identify 

them and to test the hypothesis that there are no jumps in the price process. In section 

5 we write about the econometrics of market frictions, while in section 6 we conclude. 

2 Arbitrage-free, frictionless price processes 

2.1 Semimartingales and quadratic variation 

Given a complete record of transaction or quote prices it is natural to model prices in 

continuous time (e.g. Engle (2000)). This matches with the vast continuous time financial 

economic arbitrage-free theory based on a frictionless market. In this section and the 

next, we will discuss how to make inferences on the degree of variation in such frictionless 

worlds. Section 5 will extend this by characterising the types of frictions seen in practice 

and discuss strategies econometricians have been using to overcome these difficulties. 

Y

In its most general case the fundamental theory of asset prices says that a vector of 

log-prices at time t, 

t = 
⎛
Yt 

1, ..., Y p
⎜∈ 

,t 

must obey a semimartingale process (written Y on some filtered probability ∩ SM) 

space 
⎛
�, F , (Ft)t→0 , P 

⎜ 
in a frictionless market. The semimartingale is defined as being 

a process which can be written as 

Y = A + M, (1) 

M

where A is a local finite variation process (A ∩ F V loc) and M is a local martingale (M ∩ 

loc). Compact introductions to the economics and mathematics of semimartingales are 

given in Back (1991) and Protter (2004), respectively. 

Y 

The Y process can exhibit jumps. It is tempting to decompose Y = Y ct + Y d, where 

ct and Y d are the purely continuous and discontinuous sample path components of Y . 

However, technically this definition is not clear as the jumps of the Y process can be so 
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active that they cannot be summed up. Thus we will define 

Y ct = Ac + M c , 

cwhere M c is the continuous part of the local martingale component of Y and A is A 

minus the sum of the jumps of A1 . Likewise, the continuous sample path subsets of SM 

cand M will be denoted by SM c and M . 

Crucial to semimartingales, and to the economics of financial risk, is the quadratic 

variation (QV) process of (Y ∈, X ∈)∈ ∩ SM. This can be defined as 

tj �t 

[Y, X]t = p− lim 
�⎛

Ytj − Y
⎜ ⎛

Xtj − X
⎜∈ 

, (2)tj−1 tj−1 
n�↓ 

j=1 

(e.g. Protter (2004, p. 66–77)) for any deterministic sequence2 of partitions 0 = t0 < t1 < 

... < tn = T with supj {tj+1 − tj } � 0 for n � ∼. The convergence is also locally uniform 

in time. It can be shown that this probability limit exists for all semimartingales. 

Throughout we employ the notation that 

[Y ]t = [Y, Y ]t, 

while we will sometimes refer to 
�

[Y l]t as the quadratic volatility (QVol) process for Y l 

where l = 1, 2, ..., p. It is well known that3 

Y ct[Y ] = [ ] + [Y d], where [Y d]t = 
� 

�Yu�Yu 
∈ (3) 

0�u�t 

where �Yt = Yt − Yt− are the jumps in Y and noting that [Act] = 0. In the probability 

literature QV is usually defined in a different, but equivalent, manner (see, for example, 

Protter (2004, p. 66)) � t 

[Y ]t = YtYt 
∈ − 2 Yu−dYu

∈ . (4) 
0 

1It is tempting to use the notation Y c for Y ct , but in the probability literature if Y � SM then 
Y c = M c, so Y c ignores Ac . 

2The assumption that the times are deterministic can be relaxed to allow them to be any Riemann 
sequence of adapted subdivisions. This is discussed in, for example, Jacod and Shiryaev (2003, p. 51). 
Economically this is important for it means that we can also think of the limiting argument as the result 
of a joint process of Y and a counting process N whose arrival times are the tj . So long as Y and N 
are adapted to at least their bivariate natural filtration the limiting argument holds as the intensity of 
N increases off to infinity with n. 

3Although the sum of jumps of Y does not exist in general when Y � SM, the sum of outer products 
of the jumps always does exist. Hence [Y d] can be properly defined. 
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2.2 Brownian semimartingales 

In economics the most familiar semimartingale is the Brownian semimartingale (Y ∩ 

t t
BSM) � � 

Yt = audu + θudWu, (5) 
0 0 

where a is a vector of predictable drifts, θ is a matrix volatility process whose elements 

adl`are c` ag and W is a vector Brownian motion. The stochastic integral (θ • W )t, where 

(f • g)t is generic notation for the process 
� 
0 
t 
fudgu, is said to be a stochastic volatility 

process (θ — e.g. the reviews in Ghysels, Harvey, and Renault (1996) and • W ∩ SV) 

cShephard (2005). This vector process has elements which are Mloc . Doob (1953) showed 

that all continuous local martingales with absolutely continuous quadratic variation can 

be written in the form of a SV process (see Karatzas and Shreve (1991, p. 170–172))4 . 

The drift 
� t 

audu has elements which are absolutely continuous — an assumption which 
0 

looks ad hoc, however arbitrage freeness plus the SV model implies this property must 

hold (Karatzas and Shreve (1998, p. 3) and Andersen, Bollerslev, Diebold, and Labys 

(2003, p. 583)). Hence Y ∩ BSM is a rather canonical model in the finance theory of 

continuous sample path processes. Its use is bolstered by the facts that Ito calculus for 

continuous sample path processes is relatively simple. 

If Y ∩ BSM then � t


[Y ]t = �udu

0 

the integrated covariance process, while 

dYt|Ft � N (atdt, �t−dt) , where �t = θtθ
∈ 
t, (6) 

where Ft is the natural filtration – that is the information from the entire sample path 

of Y up to time t. Thus atdt and �tdt have clear interpretations as the infinitesimal 

predictive mean and covariance of asset returns. This implies that At = 
� 
0 
t 
E (dYu|Fu) du 

while, centrally to our interests, 
t 

d[Y ]t = Cov (dYt|Ft) and [Y ]t = Cov (dYu|Fu) du. 
0 

4An example of a continuous local martingale which has no SV representation is a time-change Brow­
nian motion where the time-change takes the form of the so-called “devil’s staircase,” which is continuous 
and non-decreasing but not absolutely continuous (see, for example, Munroe (1953, Section 27)). This 
relates to the work of, for example, Calvet and Fisher (2002) on multifractals. 
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Thus A and [Y ] are the integrated infinitesimal predictive mean and covariance of the 

asset prices, respectively. 

2.3 Adding jump processes 

There is no plausible economic theory which says that prices must follow continuous 

sample path processes. Indeed we will see later that statistically it is rather easy to reject 

this hypothesis even for price processes drawn from very thickly traded markets. In this 

paper we will add a finite activity jump process (this means there are a finite number of 

jumps in a fixed time interval) Jt = 
�Nt Cj , adapted to the filtration generated by Y ,j=1 

to the Brownian semimartingale model. This yields 

t t Nt

Yt = audu + 
� 

θudWu + 
� 

Cj . (7) 
0 0 j=1 

Here N is a simple counting process and the C are the associated non-zero jumps (which 

we assume have a covariance) which happen at times 0 = ρ 0 < ρ 1 < ρ 2 < ... . It 

is helpful to decompose J into J = J A + J M , where, assuming J has an absolutely 

continuous intensity, J A = 
� t 

cudu, and ct = E (dJt|Ft). Then J M is the compensated t 0 

ctjump process, so J M ∩ M, while J A 
loc. Thus Y has the decomposition as in (1), ∩ F V 

with At = 
� 
0 
t 
(au + cu) du and 

t Nt t 

Mt = θudWu + 
� 

Cj − 
� 

cudu. 
0 j=1 0 

It is easy to see that [Y d]t = 
�Nt Cj C

∈ and so j=1 j 

t Nt� � 
Cj C

∈[Y ]t = �udu + j . 
0 j=1 

Again we note that E (dYt|Ft) = (at + ct) dt, but now, 

Cov (θtdWt, dJt|Ft) = 0, (8) 

so 

Cov (dYt|Ft) = �tdt + Cov (dJt|Ft) = d[Y ]t.∈

This means that the QV process aggregates the components of the variation of prices and 

so is not sufficient to learn the integrated covariance process 
� 
0 
t 
�udu. 
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To identify the components of the QV process we can use the bipower variation (BPV) 

process introduced by Barndorff-Nielsen and Shephard (2006). So long as it exists, the 

p × p matrix BPV process {Y } has l, k-th element 

1�
Y l, Y k

� 
= 

⎛�
Y l + Y k 

� 
− 
�
Y l − Y k 

�⎜ 
, l, k, = 1, 2, ..., p, (9)

4 

where, so long as the limit exists and the convergence is locally uniform in t, 5 

∞t/�∪ � �
Y l (10)

�
Y l
� 

t 
= p− lim 

� ��Y�
l 
(j−1) − Y�

l 
(j−2)

� �
�j − Y�

l 
(j−1)

�� . 
��0 

j=1 

Here �x� is the floor function, which is the largest integer less than or equal to x. Com­

bining the results in Barndorff-Nielsen and Shephard (2006) and Barndorff-Nielsen, Gra­

versen, Jacod, Podolskij, and Shephard (2005) if Y is the form of (7) then, without any 

additional assumptions, 
t 

−2 µ1 {Y }t = �udu, 
0 

where µr = E U r , U � N(0, 1) and r > 0, which means that | | 

Nt

−2 {Y }t 

� 
Cj C

∈[Y ]t − µ1 = j . 
j=1 

At first sight the robustness of BPV looks rather magical, but it is a consequence of the 

fact that only a finite number of terms in the sum (10) are affected by jumps, while 

each return which does not have a jump goes to zero in probability. Therefore, since the 

probability of jumps in contiguous time intervals goes to zero as ζ � 0, those terms which 

do include jumps do not impact the probability limit. The extension of this result to the 

case where J is an infinite activity jump process is discussed in Section 4.4. 

5In order to simplify some of the later results we consistently ignore end effects in variation statistics. 
This can be justified in two ways, either by (a) setting Yt = 0 for t < 0, (b) letting Y start being a 
semimartingale at zero at time before t = 0. The latter seems realistic when dealing with markets open 
24 hours a day, borrowing returns from small periods of the previous day. It means that there is a modest 
degree of wash over from one days variation statistics into the next day. There seems little econometric 
reasons why this should be a worry. Assumption (b) can also be used in equity markets when combined 
with some form of stochastic imputation, adding in artifical simulated returns for the missing period — 
see the related comments in Barndorff-Nielsen and Shephard (2002). 

6




2.4	 Forecasting 

Suppose Y obeys (7) and introduce the generic notation 

yt+s,t = Yt+s − Yt 

= at+s,t + mt+s,t, t, s > 0. 

So long as the covariance exists, 

Cov (yt+s,t|Ft) = Cov (at+s,t|Ft) + Cov (mt+s,t|Ft) 

+Cov (at+s,t, mt+s,t|Ft) + Cov (mt+s,t, at+s,t, |Ft) . 

Notice how complicated this expression is compared to the covariance in (6), which is 

due to the fact that s is not necessarily dt and so at+s,t is no longer known given Ft — 

while 
� 

t

t+dt 
audu was. However, in all likelihood for small s, a makes a rather modest 

contribution to the predictive covariance of Y . 

This suggests using the approximation that 

Cov (yt+s,t|Ft) √ Cov (mt+s,t|Ft) . 

Now using (8) so 

t+s t+s �∈ 
���� � �� 

Cov (mt+s,t|Ft) = E ([Y ]t+s − [Y ] cudu cudu .t|Ft) − E 
t t 

|Ft 

Hence if c or s is small then we might approximate 

Cov (Yt+s − Y E ([Y ]t+s − [Y ]t|Ft)	 √ t|Ft) 

= E ([θ • W ]t+s − [θ • W ]t|Ft) + E ([J ]t+s − [J ]t|Ft) . 

Thus an interesting forecasting strategy for covariances is to forecast the increments of 

the QV process or its components. As the QV process and its components are them­

selves estimable, though with substantial possible error, this is feasible. This approach 

to forecasting has been advocated in a series of influential papers by Andersen, Boller­

slev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Ebens (2001) and 

Andersen, Bollerslev, Diebold, and Labys (2003), while the important earlier paper by 
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Andersen and Bollerslev (1998a) was stimulating in the context of measuring the forecast 

performance of GARCH models. The use of forecasting using estimates of the increments 

of the components of QV was introduced by Andersen, Bollerslev, and Diebold (2003). 

We will return to it in section 3.9 when we have developed an asymptotic theory for 

estimating the QV process and its components. 

2.5 Realised QV & BPV 

The QV process can be estimated in many different ways. The most immediate is the 

realised QV estimator 
∞t/�∪

[Y� ]t = 
�⎛

Yj� − Y(j−1)� 

⎜ ⎛
Yj� − Y(j−1)� 

⎜∈ 
, 

j=1 

where ζ > 0. This is the outer product of returns computed over a fixed interval of time 

of length ζ. By construction, as ζ � 0, [Y� ]
p 

[Y ] . Likewise t t

∞t/�∪ � �
Y l l = 1, 2, ..., p, (11)

�
Y�

l
� 

t 
= 
� ��Y�

l 
(j−1) − Y�

l 
(j−2)

� �
�j − Y�

l 
(j−1)

�� ,

j=1


p
1
�
Y�

l, Y k 
� 

= 
⎛�

Y l + Y k
� 
−
�
Y l − Y k

�⎜ 
and {Y� } .� 4 � � � � � {Y }

In practice, the presence of market frictions can potentially mean that this limiting 

argument is not really available as an accurate guide to the behaviour of these statistics for 

small ζ. Such difficulties with limiting arguments, which are present in almost all areas 

of econometrics and statistics, do not invalidate the use of asymptotics, for it is used 

to provide predictions about finite sample behaviour. Probability limits are, of course, 

coarse and we will respond to this by refining our understanding by developing central 

limit theorems and hope they will make good predictions when ζ is moderately small. For 

very small ζ these asymptotic predictions become poor guides as frictions bite hard and 

this will be discussed in section 5. 

In financial econometrics the focus is often on the increments of the QV and realised 

QV over set time intervals, like one day. Let us define the daily QV 

Vi = [Y ]hi − [Y ]h(i−1) , i = 1, 2, ... 

while it is estimated by the realised daily QV 

Vi = [Y� ]hi − [Y� ]h(i−1) , i = 1, 2, .... 
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�

� �

�

p 
V l,l Clearly V�i � Vi as ζ � 0. The l-th diagonal element of V�i, written is called the i 

V 

realised variance6 of asset l, while its square root is its realised volatility. The latter 

l,k estimates 
�

V l,l , the daily QVol process of asset l. The l, k-th element of V�i, �i , is called i 

the realised covariance between assets l and k. Off these objects we can define standard 

dependence measures, like realised regression 

V l,k 
l,k V l,k 

p� �
� �l,k i = =�i 

V 
i
k,k i 

V k,k , 
i i 

which estimates the QV regression and the realised correlation 

δ
V l,k V l,k 

l,k i i , 
p 

= = i i� �
V 

�
l,l V k,k 

� δl,k �
V l,l V k,k 

i i i i 

which estimates the QV correlation. Similar daily objects can be calculated off the realised 

BPV process 

Bi = µ −2 
�
{Y� }hi − {Y� }h(i−1) 

� 
, i = 1, 2, ... 1 

which estimates 

hi 

= 
⎝
Y ct
� 
hi 
−
⎝
Y ct
� � 

= θ2 du, i = 1, 2, ... u
h(i−1) 

Bi h(i−1) 

Realised volatility has a very long history in financial economics. It appears in, for ex­

ample, Rosenberg (1972), Officer (1973), Merton (1980), French, Schwert, and Stambaugh 

(1987), Schwert (1989) and Schwert (1998), with Merton (1980) making the implicit con­

nection with the case where ζ � 0 in the pure scaled Brownian motion plus drift case. 

Of course, in probability theory QV was discussed as early as Wiener (1924) and Lévy 

(1937) and appears as a crucial object in the development of the stochastic analysis of 

semimartingales which occurred in the second half of the last century. For more gen­

eral financial processes a closer connection between realised QV and QV, and its use 

for econometric purposes, was made in a series of independent and concurrent papers 

by Comte and Renault (1998), Barndorff-Nielsen and Shephard (2001) and Andersen, 

Bollerslev, Diebold, and Labys (2001). The realised regressions and correlations were 

defined and studied in detail by Andersen, Bollerslev, Diebold, and Labys (2003) and 

Barndorff-Nielsen and Shephard (2004). 

6Some authors call V� l,l the realised volatility, but throughout this paper we follow the tradition in i 
finance of using volatility to mean standard deviation type objects. 
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A major motivation for Barndorff-Nielsen and Shephard (2002) and Andersen, Boller­

slev, Diebold, and Labys (2001) was the fact that volatility in financial markets is highly 

and unstably diurnal within a day, responding to regularly timed macroeconomic news 

announcements, social norms such as lunch times and sleeping or the opening of other 

markets. This makes estimating 

lim 
⎛
[Y ]t+� − [Y ]

⎜ 
/πt

��0 

extremely difficult. The very stimulating work of Genon-Catalot, Larédo, and Picard 

(1992), Foster and Nelson (1996), Mykland and Zhang (2002) and Mykland and Zhang 

(2005) tries to tackle this problem using a double asymptotics, as ζ � 0 and π � 0. 

However, in the last five years many econometrics researchers have mostly focused on 

naturally diurnally robust quantities like the daily or weekly QV. 

2.6 Derivatives based on realised QV and QVol 

In the last ten years an over the counter market in realised QV and QVol has been 

rapidly developing. This has been stimulated by interests in hedging volatility risk — see 

Neuberger (1990), Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999) 

and Carr and Lewis (2004). Examples of such options are where the payoffs are 

max ([Y� ]t − K1, 0) , max [Y� ]t − K2, 0 . (12) 

Interesting ζ is typically taken as a day. Such options approximate, potentially poorly, 

max ([Y ]t − K1, 0) , max [Y ]t − K2, 0 . (13) 

The fair value of options of the type (13) has been studied by a number of authors, for 

various volatility models. For example, Brockhaus and Long (1999) employs the Heston 

(1993) SV model, Javaheri, Wilmott, and Haug (2002) GARCH diffusion, while Howi­

son, Rafailidis, and Rasmussen (2004) study log-Gaussian OU processes. Carr, Geman, 

Madan, and Yor (2005) look at the same problem based upon pure jump processes. Carr 

and Lee (2003a) have studied how one might value such options based on replication 

without being specific about the volatility model. See also the overview of Branger and 

Schlag (2005). 
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The common feature of these papers is that the calculations are based on replacing 

(12) by (13). These authors do not take into account, to our knowledge, the potentially 

large difference between using [Y� ] and [Y ] .t t

2.7 Empirical illustrations: measurement 

To illustrate some of the empirical features of realised daily QV, and particularly their 

precision as estimators of daily QV, we have used a series which records the log of the 

number of German Deutsche Mark a single US Dollar buys (written Y 1) and the log 

of the Japanese Yen/Dollar rate (written Y 2). It covers 1st December 1986 until 30th 

November 1996 and was kindly supplied to us by Olsen and Associates in Zurich (see 

Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)), although we have made slightly 

different adjustments to deal with some missing data (described in detail in Barndorff-

Nielsen and Shephard (2002)). Capturing time stamped indicative bid and ask quotes from 

a Reuters screen, they computed prices at each 5-minute period by linear interpolation 

by averaging the log bid and log ask for the two closest ticks. 

Figure 1 provides some descriptive statistics for the exchange rates starting on 4th 

February, 1991. Figure 1(a) shows the first four active days of the dataset, displaying 

the bivariate 10 minute returns7 . Figure 1(b) details the daily realised volatilities for the 

DM V 1, together with 95% confidence intervals. These confidence intervals are based i 

on the log-version of the limit theory for the realised variance we will develop in the next 

subsection. When the volatility is high, the confidence intervals tend to be very large 

as well. In Figure 1(c) we have drawn the realised covariance V� 1,2 against i, together i 

with the associated confidence intervals. These terms move rather violently through this 

period. The corresponding realised correlations �δ1,2 are given in Figure 1(d). These are i 

quite stable through time with only a single realised correlation standing out from the 

others in the sample. The correlations are not particularly precisely estimated, with the 

confidence intervals typically being around 0.2 wide. 

Table 1 provides some additional daily summary statistics for 100 times the daily data 

(the scaling is introduced to make the Tables easier to read). It shows the means of the 

7This time resolution was selected so that the results are not very sensitive to market frictions. 
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−0.002 

0.000 

0.002 

(a) High requency returns for 4 days 

DM 
Yen 

0.01 

0.02 

0.03 

(b): 95% CI for daily realised volatility for DM 

0 1 2 3 4 1991.20 1991.25 1991.30 1991.35 1991.40


1991.20 1991.25 1991.30 1991.35 1991.40 

0.005 

0.010 

0.015 

0.020 

1991.20 1991.25 1991.30 1991.35 1991.40 

0.00 

0.25 

0.50 

0.75 

(d) realised correlation for DM & Yen(c): 95% CI for realised volatility for Yen 

Figure 1: DM and Yen against the Dollar. Data is 4th February 1991 onwards for 50 
active trading days. (a) 10 minute returns on the two exchange rates for the first 4 days 
of the dataset. (b) Realised volatility for the DM series. This is marked with a cross, 
while the bars denote 95% confidence intervals. (c) Realised covariance. (d) Realised 
correlation. 

squared daily returns 
⎛
Y 1 − Y 1 

⎜2 
and the estimated daily QVs V� 1 are in line, but that i i−1 i 

the realised BPV B1 is below them. The RV and BPV quantities are highly correlated, i 

but the BPV has a smaller standard deviation. A GARCH(1,1) model is also fitted to the 

daily return data and its conditional, one-step ahead predicted variances hi, computed. 

These have similar means and lower standard deviations, but hi is less strongly correlated 

with squared returns than the realised measures. 

2.8 Empirical illustration: time series behaviour 

Figure 2 shows summaries of the time series behaviour of daily raw and realised DM 

quantities. They are computed using the whole run of 10 years of 10 minute return data. 
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�

� 

Daily 
QV: V� 1 

i 

B1BPV: �
i 

GARCH: hi 
2�
Yi 

1 − Y 1 
i−1

Mean 
0.509 
0.441 
0.512 

0.504 

Standard Dev/Cor 
.50 
.95 .40 
.55 .57 .22 

.54 .48 .39 1.05 

i 

Table 1: Daily statistics for 100 times DM/Dollar return series: estimated QV, BPV, con­
ditional variance for GARCH and squared daily returns. Reported is the mean, standard 
deviation and correlations. 

Figure 2(a) shows the raw daily returns and 2(b) gives the corresponding correlogram 

of daily squared and absolute returns. As usual absolute returns are moderately more 

autocorrelated than squared returns, with the degree of autocorrelation in these plots 

being modest, while the memory lasts a large number of lags. �
V 1 for the DM Figure 2(c) shows a time series plot of the daily realised volatilities


1Bi 

series, indicating bursts of high volatility and periods of rather tranquil activity. The 

correlogram for this series is given in Figure 2(d). This shows lagged one correlations of 

around one half and is around 0.25 at 10 lags. The correlogram then declines irregularly 

at larger lags. Figure 2(e) shows using the lagged two bipower variation measure. 

1Bii 

This series does not display the peaks and troughs of the realised QVol statistics and 

its correlogram in Figure 2(d) is modestly higher with its first lag being around 0.56 � �
0, �V 1 − �compared to 0.47. The corresponding estimated jump QVol measure max 

is displayed in Figure 2(f), while its correlogram is given in Figure 2(d), which shows a 

very small degree of autocorrelation. 

2.9 Empirical illustration: a more subtle example 

2.9.1 Interpolation, last price, quotes and trades 

So far we have not focused on the details of how we compute the prices used in these 

calculations. This is important if we wish to try to exploit information buried in returns 

recorded for very small values of ζ, such as a handful of seconds. Our discussion will 

be based on data taken from the London Stock Exchange’s electronic order book, called 

SETS, in January 2004. The market is open from 8am to 4.30pm, but we remove the 

first 15 minutes of each day following Engle and Russell (1998). Times are accurate up 

to one second. We will use three pieces of the database: transactions, best bid and best 
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Figure 2: All graphs use five minute changes data DM/Dollar. Top left: daily returns.

Middle left: estimated daily QVol

�
�Vi, bottom left: estimated daily continuous QVol�

�Bi. Bottom right: estimated continuous QVol

�
max

�
0, �Vi − �Bi

�
. Top right: ACF of

squared and absolute returns. X-axis is marked off in days. Middle right: ACF of various
realised estimators.

ask. Note the bid and ask are firm quotes, not indicative like the exchange rate data

previous studied. We average the bid and ask to produce a mid-quote, which is taken to

proxy the efficient price. We also give some results based on transaction prices. We will

focus on four high value stocks: Vodafone (telecoms), BP (hydrocarbons), AstraZeneca

(pharmaceuticals) and HSBC (banking).

The top row of Figure 3 shows the log of the mid-quotes, recorded every six seconds

on the 2nd working day in January. The graphs indicate the striking discreteness of the

price processes, which is particularly important for the Vodafone series. Table 2 gives the
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Figure 3: LSE’s electronic order book on the 2nd working day in January 2004. Top
graphs: mid-quote log-price every 6 seconds, from 8.15am to 4.30pm. X-axis is in hours.
Middle graphs: realised daily QVol computed using 0.015, 0.1, 1, 5 and 20 minute midpoint
returns. X-axis is in minutes. Lower graphs: realised daily QVol computed using 0.1,
1, 5 and 20 minute transaction returns. Middle and lower graphs are computed using
interpolation and the last tick method.

tick size, the number of mid-point updates and transactions for each asset. It shows the

usual result that as the tick size, as a percentage of the price increases, then the number

of mid-quote price updates will tend to fall as larger tick sizes mean that there is a larger

cost to impatience, that is jumping the queue in the order book by offering a better price

than the best current and so updating the best quotes.

The middle row of Figure 3 shows the corresponding daily realised QVol, computed

using 0.015, 0.1, 1, 5 and 20 minute intervals based on mid-quotes. These are related to

the signature plots of Andersen, Bollerslev, Diebold, and Labys (2000). As the times of

the mid-quotes fall irregularly in time, there is the question of how to approximate the
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open-close 
open-open 
Correlation 
Tick size 
# of Mid-quotes per day 
# of Transactions per day 

Vodafone BP AstraZeneca HSBC 
Daily volatility 

0.00968 0.00941 0.0143 0.00730 
0.0159 0.0140 0.0140 0.00720 
0.861 0.851 0.912 0.731 
0.25 0.25 1.0 0.5 
333 1,434 1,666 598 
3,018 2,995 2,233 2,264 

Table 2: Top part of table: Average daily volatility. Open is the mid-price at 8.15am, 
close is the mid-price at 4.30pm. Open-open looks at daily returns. Reported are the 
sample standard deviations of the returns over 20 days and sample correlation between 
the open-close and open-open daily returns. Bottom part of table: descriptive statistics 
about the size of the dataset. 

price at these time points. The Olsen method uses linear interpolation between the prices 

at the nearest observations before and after the correct time point. Another method is 

to use the last datapoint before the relevant time — the last tick or raw method (e.g. 

Wasserfallen and Zimmermann (1985)). Typically, the former leads to falls in realised 

QVol as ζ falls, indeed in theory it converges to zero as ζ � 0 as its interpolated price 

process is of continuous bounded variation (Hansen and Lunde (2006)), while the latter 

increases modestly. The sensitivity to ζ tends to be larger in cases where the tick size is 

large as a percentage of price and this is the case here. Overall we have the conclusion 

that the realised QVol does not change much when ζ is 5 minutes or above and that it 

is more stable for interpolation than for last price. When we use smaller time intervals 

there are large dangers lurking. We will formally discuss the effect of market frictions in 

section 5. 

The bottom row in Figure 3 shows the corresponding results for realised QVols com­

puted using the transactions database. This ignores some very large over the counter 

trades. Realised QVol increases more strongly as ζ falls when we use the last tick rather 

than mid-quote data. This is particularly the case for Vodafone, where bid/ask bounce 

has a large impact. Even the interpolation method has difficulties with transaction data. 

Overall, one gets the impression from this study that basing the analysis on mid-quote 

data is sound for the LSE data8 . 
8A good alternative would be to carry out the entire analysis on either all the best bids or all the best 
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A fundamental difficulty with equity data is that the equity markets are only open 

for a fraction of the whole day and so it is quite possible that a large degree of their 

variation is at times when there is little data. This is certainly true for the U.K. equity 

markets which are closed during a high percentage of the time when U.S. markets are 

open. Table 2 gives daily volatility for open to close and open to open returns, as well 

as the correlation between the two return measures. It shows the open to close measures 

account for a high degree of the volatility in the prices, with high correlations between the 

two returns. The weakest relationship is for the Vodafone series, with the strongest for 

AstraZeneca. Hansen and Lunde (2005c) have studied how one can use high-frequency 

information to estimate the QV throughout the day, taking into account closed periods. 

2.9.2 Epps effects 

0.1 0.2 0.3 0.4 1 2 3 4 5 6 7 10 20 30 40 50 

0.1 

0.2 

0.3 

0.4 

Minutes 

Vodafone−BP 
Vodafone−AstraZeneca 
Vodafone−HSBC 
BP−AstraZeneca 
BP−HSBC 
AstraZeneca−HSBC 

Figure 4: LSE data during January 2004. Realised correlation computed daily, averaged 
over the month. Realised quantities are computed using data at the frequency on the x-axis. 

Market frictions affect the estimation of QVol, but if the asset is highly active, the 

tick size is small as a percentage of the price, ζ is well above a minute and the mid-

quote/interpolation method is used, then the effects are modest. The situation is much 

less rosy when we look at estimating quadratic covariations due to the so called Epps 

(1979) effect. This has been documented in very great detail by Sheppard (2005), who 

provides various theoretical explanations. We will come back to them in sections 3.8.3 and 

5. For the moment it suffices to look at Figure 4 which shows the average daily realised 

asks. This approach is used by Hansen and Lunde (2005c) and Large (2005). 
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correlation computed in January 2004 for the four stocks looked at above. Throughout 

prices are computed using mid-quotes and interpolation. The graph shows how this 

average varies with respect to ζ. It trends downwards to zero as ζ � 0, with extremely 

low dependence measures for low values of ζ. This is probably caused by the fact that 

asset prices tend not to simultaneously move due to non-synchronous trading and the 

differential rate at which information of different types is absorbed into individual stock 

prices. 

3 Measurement error when Y � BSM 

3.1 Infeasible asymptotics 

Market frictions mean that it is not wise to use realised variation objects based on very 

small ζ. This suggests refining our convergence in probability arguments to give a cen­

tral limit theorem which may provide reasonable predictions about the behaviour of RV 

statistics for moderate values of ζ, such as 5 or 10 minutes, where frictions are less likely 

to bite hard. Such CLTs will be the focus of attention in this section. At the end of the 

section, in addition, we will briefly discuss various alternative measures of variation, such 

as realised range, subsampling and kernel, which have recently been introduced to the 

literature. Finally we will also discuss how realised objects can contribute to the practical 

forecasting of volatility. 

We will derive the central limit theorem for [Y� ] which can then be discretised to t 

produce the CLT for V�i. Univariate results will be presented, since this has less nota­

tional clutter. The results were developed in a series of papers by Jacod (1994), Jacod 

and Protter (1998), Barndorff-Nielsen and Shephard (2002) and Barndorff-Nielsen and 

Shephard (2004). 

Theorem 1 Suppose that Y ∩ BSM is one-dimensional and that (for all t < ∼) 
� t 

a2 du < ∼, then as ζ � 0 sou0 

t 

ζ−1/2 ([Y� ]t − [Y ]t) �
⊥

2 
� 

θ2 dBu, (14)u
0 

where B is a Brownian motion which is independent from Y and the convergence is in 

law stable as a process. 
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� 

Proof. By Ito’s lemma for continuous semimartingales 

Y 2 = [Y ] + 2Y • Y, 

then 
⎛
Yj� − Y(j−1)� 

⎜2 
= [Y ]�j − [Y ]�(j−1) + 2 

� �j 

(Yu − Y(j−1)� )dYu. 
�(j−1) 

This implies that 

ζ

∞t/�∪ � �j 
−1/2 ([Y� ]t − [Y ]t) = 2ζ−1/2 

� 
(Yu − Y(j−1)� )dYu 

j=1 �(j−1) 

�∞t/�∪ 

= 2ζ−1/2 (Yu − Y�∞u/�∪)dYu. 
0 

Jacod and Protter (1998, Theorem 5.5) show that for Y satisfying the conditions in 

Theorem 1 then9 

t t 

ζ
1 
�

−1/2 
� 

(Yu − Y�∞u/�∪)dYu udBu, 
0 

� ⊥
2 0 

θ2 

where B Y and the convergence is in law stable as a process. This implies→→

ζ−1/2 ([Y� ] [Y ]) �
⊥

2 
⎛
θ2 B

⎜ 
.− • 

The most important point of this Theorem is that B Y . The appearance of the→→

additional Brownian motion B is striking. This means that Theorem 1 implies, for a 

single t, 
t 

L 
� � � 

ζ−1/2 ([Y� ]t − [Y ]t) � MN 0, 2 θ4 du , (15)u
0 

where MN denotes a mixed Gaussian distribution. This result implies in particular that, 

for i = j,∈
� � hi

� 
V�i − Vi 

� 

� MN 

�� 
0 
� 

θ4 du 0 
�� 

ζ−1/2 L 

0 
, 2 h(i−1) 

0 
u

θ4 du
,� hj

V�j − Vj h(j−1) u

9At an intuitive level, if we ignore the drift then 

� �j � �j


(Yu − Y(j−1)� )dYu � �2

�(j−1) (Wu − W(j−1)�)dWu, 

�(j−1) �(j−1) 

1 �2which is a martingale difference sequence in j with zero mean and conditional variance of 2 �(j−1). 
Applying a triangular martingale CLT one would expect this result, although formalising it requires a 
considerable number of additional steps. 
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� � 

�� � 

so V�i − Vi are asymptotically uncorrelated, so long as Var < ∼, through time. V�i − Vi 

Barndorff-Nielsen and Shephard (2002) showed that Theorem 1 can be used in practice 

[4]as the integrated quarticity 
� t 

θ4 du can be consistently estimated using (1/3) {Y� } where
0 u t 

∞t/�∪

[4]{Y� }t = ζ−1 
�⎛

Yj� − Y(j−1)� 

⎜4 
. (16) 

j=1 

ζ
In particular then 

−1/2 ([Y� ]t − [Y ]t) L � N(0, 1). (17)� 
2 [4] 

3 
{Y� }t 

This is a nonparametric result as it does not require us to specify the form of a or θ. 

ζ

The multivariate version of (14) has that as ζ � 0 so 

1 
q q

−1/2 
⎛
[Y� ](kl) − [Y ](kl)

⎜ 
� ⊥

2 

���⎛
θ(kb)θ(cl) + θ(lb)θ(ck)

⎜ 
B(bc)

� 
, k, l = 1, ..., q, • 

b=1 c=1 

(18) 

where B is a q × q matrix of independent Brownian motions, independent of Y and the 

convergence is in law stable as a process. In the mixed normal version of this result, the 

asymptotic covariance is a q × q × q × q array with elements 

t 

{�(kk� )u�(ll� )u + �(kl�)u�(lk�)u + �(kl)u�(k�l� )u}du . (19) 
0 k,k�,l,l�=1,...,q 

Barndorff-Nielsen and Shephard (2004) showed how to use high frequency data to estimate 

this array of processes. We refer the reader to that paper, and also Mykland and Zhang 

(2005), for details. 

3.2 Finite sample performance & the bootstrap 

Our analysis of [Y� ]t − [Y ]t has been asymptotic as ζ � 0. Of course it is crucial to know 

if this analysis is informative for the kind of moderate values of ζ we see in practice. A 

number of authors have studied the finite sample behaviour of the feasible limit theory 

given in (17) and a log-version, derived using the delta-rule 

ζ−1/2 (log[Y� ]t − log[Y ]t) L � N(0, 1). (20)� 

3 

{Y� }[4] 
2 t 

2([Y� ]t)
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We refer readers to Barndorff-Nielsen and Shephard (2005a), Meddahi (2002), Goncalves 

and Meddahi (2004), and Nielsen and Frederiksen (2005). The overall conclusion is that 

(17) is quite poorly sized, but that (20) performs pretty well. The asymptotic theory 

is challenged in cases where there are components in volatility which are very quickly 

mean reverting. In the multivariate case, Barndorff-Nielsen and Shephard (2004) studied 

the finite sample behaviour of realised regression and correlation statistics. They suggest 

various transformations which improve the finite sample behaviour of these statistics, 

including the use of the Fisher transformation for the realised correlation. 

Goncalves and Meddahi (2004) have studied how one might try to bootstrap the 

realised daily QV estimator. Their overall conclusions are that the usual Edgeworth 

expansions, which justify the order improvement associated with the bootstrap, are not 

reliable guides to the finite sample behaviour of the statistics. However, it is possible to 

design bootstraps which provide very significant improvements over the limiting theory 

in (17). This seems an interesting avenue to follow up, particularly in the multivariate 

case. 

3.3 Irregularly spaced data 

Mykland and Zhang (2005) have recently generalised (14) to cover the case where prices 

are recorded at irregular time intervals. See also the related work of Barndorff-Nielsen 

and Shephard (2005b). Mykland and Zhang (2005) define a random sequence of times, 

independent of Y , 10 over the interval t ∩ [0, T ], 

= {0 = t0 < t1 < ... < tn = T} ,Gn 

then continue to have ζ = T/n, and define the estimated QV process 

tj �t 

[YGn ]t = 
�⎛

Ytj − Ytj−1 

⎜2 p 
[Y ]t. 

j=1 

10It is tempting to think of the tj as the time of the j-th trade or quote. However, it is well know 
that the process generating the times of trades and price movements in tick time are not statistically 
independent (e.g. Engle and Russell (2005) and Rydberg and Shephard (2000)). This would seem to rule 
out the direct application of the methods we use here in tick time, suggesting care is needed in that case. 
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� � 

They show that as n � ∼ so11 

� 

ζ

tj �t tj 
−1/2 ([YGn ]t − [Y ]t) = 2ζ−1/2 

�� 
(Yu − Ytj−1 )dYu 

j=1 tj−1 

t 
L 

� � 
γHG � 

θ4 

� 

,� MN 0, 2 u du 
γu u

0 

where 
tj �t 

2HG = lim Ht 
Gn , where Ht 

Gn = ζ−1 
� 

(tj − tj−1) ,t 
n�↓ 

j=0 

t

and we have assumed that θ follows a diffusion and HG , which is a bit like a QV process but 

is scaled by ζ−1, is differentiable with respect to time. The HG function is non-decreasing 

and runs quickly when the sampling is slower than normal. For regularly space data, 

j = ζj and so HG = t, which reproduces (15). t 

It is clear that 
tj �t t 

[YGn ]
[4] 

= ζ−1 
�⎛

Ytj − Ytj−1 

⎜4 p 
� � 

γHG � 

� 3 u θ4 du,t γu u

j=1 0 

which implies the feasible distributional result in (17) and (20) also holds for irregularly 

spaced data, which was one of the results in Barndorff-Nielsen and Shephard (2005b). 

3.4 Multiple grids 

Zhang (2004) extended the above analysis to the simultaneous use of multiple grids — 

allowing the same [Y ] to be estimated using a variety of realised QV type objects based 

on slightly different spacing between observations. In our exposition we will work with 

G 0 < ti n(i) = {0 = ti 1 < ... < ti = T } for i = 0, 1, 2, ..., I and ζi = T/ni. Then define the n 

ji-th estimated QV process [YGn(i)]t = 
�ti �t 

�
Yti − Yti 

�2 
. Additionally we need a new j=1 j j−1 

cross term for the covariation between the time scales. The appropriate term is 

i,kt �tj 

Ht 
G(i)≤G(k) 

= lim Ht 
Gn(i)≤Gn (k) 

, where Ht 
Gn(i)≤Gn (k) 

= (ζiζk)
−1/2 

� 
tj − tj−1 

�
i,k i,k 

�2 
, 

n�↓ 
j=1 

11At an intuitive level, if we ignore the drift then 

tj tj 

(Yu − Ytj−1 )dYu � �2 (Wu − Wtj−1 )dWu ,tj−1 
tj−1 tj−1 

which is a martingale difference sequence in j with zero mean and conditional variance of 
1 �2 (tj − tj−1). Although this suggests the stated result, formalising it requires a considerable number 2 tj−1 

of additional steps. 
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where ti,kj comes from 

Gn(i) ∞ Gn(k) = 
�

0 = ti,k < ti,k < ... < ti,k = T 
� 

, i, k = 0, 1, 2, ..., I. 0 1 2n 

Clearly, for all i, 

ti �tj 

−1/2 −1/2 j 

ζi 

⎛
[YGn(i)]t − [Y ]t

⎜ 
= 2ζi 

�� 

ti 

ti 

(Yu − Ytj
i 
−1 

)dYu 

j=1 j−1 

−1/2
so the scaled (by ζ−1/2 

and ζk , respectively) asymptotic covariance matrix of [YGn(i)]ti 

and [YGn(k)]t is 

G(i)
⎞ � t 

�
γHu 

� 

θ4 

� 

⎟
0 

du 

2 
⎟ γu u • �
⎟

G(i)≤G(k) G(k) 

�
.⎟ � t 

�
γHu 

� � t 
�

γHu 

� 

θ4 

�
θ4 

�
du du

⎠ 
γu u

0 γu u
� 

0 

Example 1 Let t0 
j = ζ (j + π), t1 = ζ (j + σ) where π − σ ∩ [0, 1] are temporal offsets, j | | 

G(1)
then Ht 

G(0) 
= Ht = t, 

2Ht 
G(0)≤G(1) 

= t 
⎛
(σ − π) + (1 − σ − π )2⎜ .| |

Thus 

ζ−1/2 

� 
[YGn(0) ]t − [Y ]t 

� 
L 

� � 
1 

�� t � 

θ4 

[YGn(1) ]t − [Y ]t 
� MN 0, 2 2 2 

• 
udu 

(σ − π) + (1 − σ − π ) 1 0| |

The correlation between the two measures is minimised at 1/2 by setting σ − π = 1/2.| |

kExample 1 extends naturally to when tk
j = ζ 

⎛
j + 

⎜
, k = 0, 1, 2, ..., K, which allows 

K+1 

many equally spaced realised QV like estimators to be defined based on returns measured 

over ζ periods. The scaled asymptotic covariance of [YGn(i)]t and [YGn(k)]t is 

2 

�� 
k − i 

�2 � �
k − i �

��2
�� t 

θ4 du.uK + 1 
+ 1 −

���K + 1 
�� 

0 

If K = 1 or K = 2 then the correlation between the estimates is 1/2 and 5/9, respectively. 

As the sampling points become more dense the correlation quickly escalates which means 

that each new realised QV estimator brings out less and less additional information. 
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3.5 Subsampling 

The multiple grid allows us to create a pooled grid estimator of QV — which is a special 

case of subsampling a statistic based on a random field, see for example the review of 

Politis, Romano, and Wolf (1999, Ch. 5). A simple example of this is 
K

1 
[YG+ ]t = 

�
[YGn(i)]t, (21)

n (K) K + 1 
i=0 

which was mentioned in this context by Müller (1993) and Zhou (1996, p. 48). Clearly 

[YG+ ]t
p 

[Y ]t as ζ � 0, while the properties of this estimator were first studied when 
n (K)

Y ∩ BSM by Zhang, Mykland, and Äıt-Sahalia (2005). Zhang (2004) also studies the 

properties of unequally weighted pooled estimators, while additional insights are provided 

by Äıt-Sahalia, Mykland, and Zhang (2005). 

Example 2 Let tkj = ζ 
⎛
j + k 

⎜
, k = 0, 1, 2, ..., K. Then, for fixed K as ζ � 0 so

K+1
� 
[YGn(0)]t − [Y ]t 

�


ζ−1/2


[YGn(1)]t − [Y ]t

K K


� �
k − i 

��2
��

L � MN 0, 
2 ��

�� 
k − i 

�2 

+ 

� 

1 − ��
�
K + 1 

��� 
t 

θ4 du 

� 

u
(K + 1)2 

i=0 k=0 
K + 1 0 

This subsampler is based on a sample size K + 1 times the usual one but returns are still 

recorded over intervals of length ζ. When K = 1 then the constant in front of integrated 

quarticity is 1.5 while when K = 2 it drops to 1.4074. The next terms in the sequence 

are 1.3750, 1.3600, 1.3519 and 1.3469 while it asymptotes to 1.333, a result due to Zhang, 

Mykland, and Aı̈t-Sahalia (2005). Hence the gain from using the entire sample path of Y 

via multiple grids is modest and almost all the available gains occur by the time K reaches 

2. However, we will see later that this subsampler has virtues when there are market 

frictions. 

3.6 Serial covariances 

Suppose we define the notation G� (π, σ) = {ζ(π + σ), ζ(2π + σ), ...}, then the above theory 

implies that 

θ2 

θ

⎞ 
ζ−1/2 

�
[YGn (2,0)]t − 

� t
udu
� � 

⎞⎞ 
0 
� ⎞ 

4 2 2 
�� t 

� 

2 L
⎟

ζ−1/2 
�
[YGn(2,−1)]t − 

� 0 
t

udu
� �

� MN 0 2 4 2 θ4 du� .⎟
u⎟ 0 

� ⎠⎠ � ,⎠ � 
0

�
0 2 2 2

⎠ 
ζ−1/2 

�
[YGn (1,0)]t − 

� t 
θ2 du

� �


0
 u
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�

Define the realised serial covariance as 
∞t/�∪

εs(Y� , X� ) = 
�⎛

Y�j − Y�(j−1)

⎜ ⎛
X�(j−s) − X�(j−s−1)

⎜ 
, s = 0, 1, 2, ..., S, 

ε

j=1 

−s(Y, X) = �s(Y, X) while �s(Y� ) = �s(Y� , Y� ). Derivatives on such objects have and say � ε ε ε

recently been studied by Carr and Lee (2003b). We have that 

ε1(Y� ) = [YGn(2,0)]t + [YGn(2,−1)]t − 2[YGn(1,0) ]t + op(ζ
1/2).2�

Note that �ε0(Y� ) = [YGn(1,0)]t. Then, clearly 
⎞ 

ε0(Y� ) −
� t 

θ2 
� ⎞⎞ 

0 
� ⎞ 

2 0 0 
� � 

u0 
· · · 

t ⎟ �
. 

�� MN ⎟⎟ . 
� ⎟ 0

.
1
. . 

0 �� 
θ4 du 

�
, (22)ζ−1/2 

⎟
�

ε1(

. 
Y� )

du 
�

L 
⎟⎟ 0 �

, 
⎟

. . . . � u
�⎟

. 
� ⎟⎟

. 
� ⎟
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see Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Theorem 2). Consequently 

⎞ 
ε1(Y� )/�

θ
ε0(Y� ) 

� ⎞
� t 

� 
4 du

�
. L 0 u �

ζ−1/2 ⎟
.. 

�� MN ⎠0, I ⎠ 
ε0(Y� ) 

� 
⎟ �� 

0 
t 
θ2 du

�2 � , 

εS (Y� )/� u

which differs from the result of Bartlett (1946), inflating the usual standard errors as well 

as making inference multivariate mixed Gaussian. There is some shared characteristics 

with the familiar Eicker (1967) robust standard errors but the details are, of course, rather 

different. 

3.7 Kernels 

Following Bartlett (1950) and Eicker (1967), long run estimates of variances are often 

computed using kernels. We will see this idea may be helpful when there are market 

frictions and so we take some time discussing this here. It was introduced in this context 

by Zhou (1996) and Hansen and Lunde (2006), while a thorough discussion was given by 

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Theorem 2). A kernel takes on 

the form of 
q

RVw (Y ) = w0[Y� ] + 2 
� 

wi�εi(Y� ), (23) 
i=1 

where the weights wi are non-stochastic. It is clear from (22) that if the estimator is based 

on ζ/K returns, so that it is compatible with (21), then 

t tq
��−1/2 � � � 

L 
� � �

2 2 

� 
ζ 
� 

w0 + 2 
� 

w RVw(Y � ) − w0 θ2 du � MN 0, 2 θ4 du . (24)u u
KK 

i=1 
i 

0 0 
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w

In order for this method to be consistent for integrated variance as q � ∼ we need that 

0 = 1 + o(1) and 
�q wi 

2/K = O(1) as a function of q.i=1 

Example 3 The Bartlett kernel puts w0 = 1 and wi = (q + 1 − i) / (q + 1). When q = 1 

then w1 = 1/2 and the constant in front of integrated quarticity is 3, while when q = 2 

then w1 = 2/3, w2 = 1/3 and the constant becomes 4 + 2/9. For moderately large q this 

is well approximated by 4 (q + 1) /3. This means that we need q/K � 0 for this method 

to be consistent. This result appears in Barndorff-Nielsen, Hansen, Lunde, and Shephard 

(2004, Theorem 2). 

3.8 Other measures 

3.8.1 Realised range 

Suppose Y = θW , a scaled Brownian motion, then 
� � � 

r 
� 

E sup Y 2 = τ2θ
2t, where τ = E sup ,s r 

0�s�t 0�s�1 
|Ws| 

noting that τ2 = 4 log 2 and τ4 = 9�(3), where � is the Riemann function. This obser­

vation led Parkinson (1980) to provide a simple estimator of θ2 based on the highs and 

lows of asset prices. See also the work of Rogers and Satchell (1991), Alizadeh, Brandt, 

and Diebold (2002), Ghysels, Santa-Clara, and Valkanov (2004) and Brandt and Diebold 

(2004). One reason for the interest in ranges is the belief that they are quite informative 

and somewhat robust to market frictions. The problem with this analysis is that it does 

not extend readily when Y ∩ BSM. 

In independent work, Christensen and Podolskij (2005) and Martens and van Dijk 

(2005) have studied the realised range process. Christensen and Podolskij (2005) define 

the process as 
∞t/�∪

\Y \t = p− lim 
� 

sup (Ys − Y(j−1)� )
2 , (25) 

��0 j=1 s≥[(j−1)�,j�] 

which is estimated by the obvious realised version, written \Y� \t. Christensen and Podol­

skij (2005) have proved that if Y ∩ BSM, then τ−1 \Y \t = 
� t 

θ2 du. Christensen and 2 0 u

Podolskij (2005) also shows that under rather weak conditions 

t 
L 2 θ4 

� 

ζ−1/2 ⎛τ−1 \Y� \t − [Y ]t
⎜ 
� M N 

� 

0,
τ4 − τ2 � 

du ,2 τ2 u
2 0 
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� 

where τ∈ = (τ4 − τ2 
2) /τ

2 √ 0.4. This shows that it is around five time as efficient as 2 

the usual realised QV estimator. Christensen and Podolskij (2005) suggest estimating 

integrated quarticity using 

∞t/�∪

ζ−1τ−1 
� 

sup (Ys − Y(j−1)� )
4 ,4 

j=1 s≥[(j−1)�,j�] 

which means this limit theorem is feasible. Martens and van Dijk (2005) have also studied 

the properties of \Y� \t using simulation and empirical work. 

As far as we know no results are known about estimating [Y ] using ranges when there 

are jumps in Y , although it is relatively easy to see that a bipower type estimator could 

be defined using contiguous ranges which would robustly estimate [Y ct]. 

3.8.2 Discrete sine transformation 

Curci and Corsi (2003) have argued that before computing realised QV we should prefilter 

the data using a discrete sine transformation to the returns in order to reduce the impact 

of market frictions. This is efficient when the data X is a Gaussian random walk Y plus 

independent Gaussian noise π model, where we think of the noise as market frictions. The 

Curci and Corsi (2003) method is equivalent to calculating the realised QV process on 

the smoother E (Y X; ϑ), where ϑ are the estimated parameters indexing the Gaussian |

model. This type of approach was also advocated in Zhou (1996, p. 112). 

3.8.3 Fourier and overlapping approaches 

Motivated by the problem of irregularly spaced data, where the spacing is independent of 

Y , Malliavin and Mancino (2002) showed that if Y ∩ BSM then 

J
pl k

⎝
YJ

l , Y k 
� 
2� 

= β2 

� 
1 �⎛

aj aj + bl bk 
⎜

� 
⎝
Y l, Y k 

� 
2� 

, (26)J J j j 
j=1 

as J � ∼, where the Fourier coefficients of Y are 

2� 2�1 
� 

1 
�

l aj = cos(ju)dYu
l , bl

j = sin(ju)dY l . 
β 0 β 0 

u 
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The Fourier coefficients are computed by, for example, integration by parts 

1l aj = sin(ju)Y ldu
⎛
Y2

l
� − Y0 

l
⎜

+ 
j 
� 2�

uβ β 0 
n−1

1 1 √ 
β 

⎛
Y2

l
� − Y0 

l
⎜

+ 
�

{cos (jti) − cos (jti+1)} Y l ,
β ti 

i=0 

n−1
1 

bl 
�

{sin (jti) − sin (jti+1)} Y l .tij √ 
β 

i=0 

This means that, in principle, one can use all the available data for all the series, even 

though prices for different assets appear at different points in time. Indeed each series 

has its Fourier coefficients computed separately, only performing the multivariate aspect 

of the analysis at step (26). A similar type of analysis could be based on wavelets, see 

Hog and Lunde (2003). 

The performance of this Fourier estimator of QV is discussed by, for example, Barucci 

and Reno (2002b), Barucci and Reno (2002a), Kanatani (2004b), Precup and Iori (2005), 

Nielsen and Frederiksen (2005) and Kanatani (2004a) who carry out some extensive sim­

ulation and empirical studies of the procedure. Reno (2003) has used a multivariate 

version of this method to study the Epps effects, while Mancino and Reno (2005) use it 

to look at dynamic principle components. Kanatani (2004a, p. 22) has shown that in the 

univariate case the finite J Fourier estimator can be written as a kernel estimator (23). 

For regularly spaced data he derived the weight function, noting that as J increases, so 

each of these weights declined and so for fixed ζ so [YJ ]2� � [Y� ]2� . An important missing 

component in this analysis is any CLT for this estimator. 

A related approach has been advocated by Corsi (2005, Ch. 5), Martens (2003) and 

Hayashi and Yoshida (2005, Definition 3.1). They study the estimator 

ti �t tj �t �
Y l, Y m

� 
t 
= 
���

Y l − Y l 
� �

Y m − Y m 
�

I {(ti−1, ti) ↓ (tj−1, tj ) = (27)ti ti−1 tj tj−1 
∈ ∪} . 

i=1 j=1 

This multiplies returns together whenever time intervals of the returns have any com­

ponent which are overlapping. This artificially includes terms with components which 

are approximately uncorrelated (inflating the variance of the estimator), but it does not 

exclude any terms and so does not miss any of the contributions to quadratic covariation. 

They show under various assumptions that as the times of observations become denser 
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over the interval from time 0 to time t, this estimator converges to the desired quadratic 

covariation quantity. 

3.8.4 Generalised bipower variation 

The realised bipower variation process suggests studying generic statistics of the form 

introduced by Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) and 

Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006) 

Y

∞t/�∪

� (g, h)t = ζ 
� 

g 
�
ζ−1/2 

⎛
Y�(j−1) − Y�(j−2)

⎜� 
h 
�
ζ−1/2 

⎛
Y�j − Y�(j−1)

⎜� 
, (28) 

j=1 

where the multivariate Y ∩ BSM and g, h are conformable matrices with elements which 

are continuous with at most polynomial growth in their arguments. Both QV and mul­

tivariate BPV can be cast in this form by the appropriate choice of g, h. Some of the 

choices of g, h will deliver statistics which will be robust to jumps. 

Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) have shown that 

as ζ � 0 the probability limit of this process is always the generalised BPV process 

t 

δπu 
(g)δπu 

(h)du, 
0 

where the convergence is locally uniform, δπ (g) = Eg(X) and X � N(0, θθ∈). They also 

provide a central limit theorem for the generalised power variation estimator. 

� l�r 

An example of the above framework which we have not covered yet is achieved by 

selecting h(y) = 
�
y
�

for r > 0 and g(y) = 1, then (28) becomes 

∞nt∪
r 

(29)ζ1−r/2 
���Y�

l 
(j−1) − Y�

l 
(j−2)

�� , 
j=1 

which is called the realised r-th order power variation. When r is an integer it has 

been studied from a probabilistic viewpoint by Jacod (1994) while Barndorff-Nielsen and 

Shephard (2003) look at the econometrics of the case where r > 0. The increments 

of these types of high frequency volatility measures have been informally used in the 

financial econometrics literature for some time when r = 1, but until recently without a 

strong understanding of their properties. Examples of their use include Schwert (1990), 

Andersen and Bollerslev (1998b) and Andersen and Bollerslev (1997), while they have 
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also been abstractly discussed by Shiryaev (1999, pp. 349–350) and Maheswaran and 

Sims (1993). Following the work by Barndorff-Nielsen and Shephard (2003), Ghysels, 

Santa-Clara, and Valkanov (2004) and Forsberg and Ghysels (2004) have successfully 

used realised power variation as an input into volatility forecasting competitions. 

It is unclear how the greater flexibility over the choice of g, h will help econometricians 

in the future to learn about new features of volatility and jumps, perhaps robustly to 

market frictions. It would also be attractive if one could generalise (28) to allow g and h 

to be functions of the path of the prices, not just returns. 

3.9 Non-parametric forecasting 

3.9.1 Background 

We saw in section 2.4 that if s is small then 

Cov (Yt+s − Yt|Ft) √ E ([Y ]t+s − [Y ]t|Ft) . 

This suggests: 

1. estimating components of the increments of QV; 

2. projecting these terms forward using a time series model. 

This separates out the task of historical measurement of past volatility (step 1) from 

the problem of forecasting (step 2). 

V

Suppose we wish to make a sequence of one-step or multi-step ahead predictions of 

i = [Y ]hi −[Y ]h(i−1) using their proxies V�i = [Y� ]hi −[Y� ]h(i−1), raw returns yi = Yhi −Yh(i−1) 

(to try to deal with leverage effects) and components �Bi = {Y� }hi − {Y� }h(i−1), where 

i = 1, 2, ..., T . For simplicity of exposition we set h = 1. This setup exploits the high 

frequency information set, but is somewhat robust to the presence of complicated intraday 

effects. Clearly if Y ∩ BSM then the CLT for realised QV implies that as ζ � 0, so long 

as the moments exist, 

E (Vi|Fi−1) √ E 
� � 

+ o(ζ1/2).V�i|Fi−1 
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� 

� 

�

It is compelling to choose to use the coarser information set, so 

Bi−1, � B1, yi−1, ..., y1Cov 
�
Yi − Yi−1 Vi−1, V�i−2, ..., V�1, � Bi−2, ..., �

� 

E 
�
Vi|V�i−1, V�i−2, ..., V�1, � Bi−2, ..., �Bi−1, � B1, yi−1, ..., y1√ 

Vi Vi−1, V�i−2, ..., V�1, � Bi−2, ..., �Bi−1, � B1, yi−1, ..., y1 .E 
�
� |�√ 

y

Forecasting can be carried out using structural or reduced form models. The sim­

plest reduced form approach is to forecast V�i using the past history V�i−1, V�i−2, ..., V�1, 

i−1, yi−2, ..., y1 and � Bi−2, ..., �Bi−1, � B1 based on standard forecasting methods such as au­

toregressions. The earliest modelling of this type that we know of was carried out by 

Rosenberg (1972) who regressed V�i on Vi−1 to show, for the first time in the academic 

literature, that volatility was partially forecastable. 

This approach to forecasting is convenient but potentially inefficient for it fails to 

use all the available high frequency data. In particular, for example, if Y ∩ SV then 

accurately modelled high frequency data may allow us to accurately estimate the spot 

covariance �(i−1)h, which would be a more informative indicator than V�i−1. However, the 

results in Andersen, Bollerslev, and Meddahi (2004) are reassuring on that front. They 

indicate that if Y ∩ SV there is only a small loss in efficiency by forgoing �(i−1)h and 

using V�i−1 instead. Further, Ghysels, Santa-Clara, and Valkanov (2004) and Forsberg 

and Ghysels (2004) have forcefully argued that by additionally conditioning on low power 

variation statistics (29) very significant forecast gains can be achieved. 

3.9.2 Illustration 

In this subsection we will briefly illustrate some of these suggestions in the univariate case. 

Much more sophisticated studies are given in, for example, Andersen, Bollerslev, Diebold, 

and Labys (2001), Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Boller­

slev, Diebold, and Labys (2003), Bollerslev, Kretschmer, Pigorsch, and Tauchen (2005) 

and Andersen, Bollerslev, and Meddahi (2004), who look at various functional forms, 

differing asset types and more involved dynamics. Ghysels, Santa-Clara, and Valkanov 

(2004) suggest an alternative method, using high frequency data but exploiting more 

sophisticated dynamics through so-called MIDAS regressions. 
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Const �Vi−1 
�Vi−5 

�Vi−20 
�Vi−40 

�Bi−1 
�Bi−5 

�Bi−20 
�Bi−40 log L 49 

0.503 -1751.42 4660 
(0.010) 
0.170 0.413 0.153 0.061 0.030 -1393.41 199 

(0.016) (0.018) (0.018) (0.018) (0.017) 
0.139 -0.137 -0.076 -0.017 0.116 0.713 0.270 0.091 -0.110 -1336.81 108 

(0.017) (0.059) (0.059) (0.058) (0.058) (0.075) (0.074) (0.074) (0.073) 
0.139 0.551 0.180 0.071 0.027 -1342.03 122 

(0.017) (0.023) (0.023) (0.022) (0.021) 

Realised QV terms Realised BPV terms Summary measures 
P ort

Table 3: Prediction for 100 times returns on the DM/Dollar series. Dynamic regression, 
predicting future daily RV Vi using lagged values and lagged values of estimated realised 
BPV terms Bi. Software used was PcGive. Subscripts denote the lag length in this 
table. Everything is computed using 10 minute returns. Figures in brackets are asymptotic 
standard errors. Port 49 denotes the Box-Ljung portmantau statistic computed with 49 lags, 
while log-L denotes the Gaussian likelihood. 

Table 3 gives a simple example of this approach for 100 times the returns on the 

DM/Dollar series. It shows the result of regressing V�i on a constant, and simple lagged 

versions of V�i and �Bi. We dropped a priori the use of yi as regressors for this exchange rate, 

where leverage effects are usually not thought to be important. The unusual spacing, using 

1, 5, 20 and 40 lags, mimics the approach used by Corsi (2003) and Andersen, Bollerslev, 

and Diebold (2003). The results are quite striking. None of the models have satisfactory 

Box-Ljung portmanteau tests (this can be fixed by including a moving average error term 

in the model), but the inclusion of lagged information is massively significant. The lagged 

realised volatilities seem to do a reasonable job at soaking up the dependence in the data, 

but the effect of bipower variation is more important. This is in line with the results in 

Andersen, Bollerslev, and Diebold (2003) who first noted this effect. See also the work of 

Forsberg and Ghysels (2004) on the effect of inclusion of other power variation statistics 

in forecasting. 

Table 4 shows some rather more sophisticated results. Here we model returns di­

rectly using a GARCH type model, but also include lagged explanatory variables in the 

conditional variance. This is in the spirit of the work of Engle and Gallo (2005). The 

results above the line show the homoskedastic fit and the improvement resulting from the 

standard GARCH(1,1) model. Below the line we include a variety of realised variables as 

explanatory variables; including longer lags of realised variables does not improve the fit. 
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Const �Vi−1 
�Bi−1 (Yi−1 − Yi−2)

2 hi−1 log L 
0.504 -2636.59 

(0.021) 
0.008 0.053 0.930 -2552.10 

(0.003) (0.010) (0.013) 
0.017 -0.115 0.253 0.019 0.842 -2533.89 

(0.009) (0.039) (0.076) (0.019) (0.052) 
0.011 0.085 0.015 0.876 -2537.49 

(0.008) (0.042) (0.017) (0.049) 
0.014 0.120 0.013 0.853 -2535.10 

(0.009) (0.058) (0.019) (0.055) 
0.019 -0.104 0.282 0.822 -2534.89 

(0.010) (0.074) (0.116) (0.062) 

Realised terms Standard GARCH terms 

Table 4: Prediction for 100 times returns Yi − Yi−1 on the DM/Dollar series. GARCH 
type model of the conditional variance hi of daily returns, using lagged squared returns 
(Yi−1 − Yi−2)

2, realised QV V�i−1, realised BPV Bi−1 and lagged conditional variance hi−1. 
Throughout a Gaussian quasi-likelihood is used. Robust standard errors are reported. 
Carried out using PcGive. 

The best combination has a large coefficient on realised BPV and a negative coefficient 

on realised QV. This means when there is evidence for a jump then the impact of realised 

volatility is tempered, while when there is no sign of jump the realised variables are seen 

with full force. What is interesting from these results is that the realised effects are very 

much more important than the lagged daily returns. In effect the realised quantities have 

basically tested out the traditional GARCH model. 

Overall this tiny empirical study confirms the results in the literature about the pre­

dictability of realised volatility. However, we have also seen that it is quite easy to out­

perform a simple autoregressive model for RV. We can see how useful bipower variation is 

and that taken together the realised quantities do provide a coherent way of empirically 

forecasting future volatility. 

3.10 Parametric inference and forecasting 

Throughout we have emphasised the non-parametric nature of the analysis. This is helpful 

due to the strong and complicated diurnal patterns we see in volatility. These effects tend 

also to be unstable through time and so are difficult to model parametrically. A literature 

which mostly avoids this problem is that on estimating parametric SV models from low 

frequency data. Much of this is reviewed in Shephard (2005, Ch. 1). Examples include 
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the use of Markov chain Monte Carlo methods (e.g. Kim, Shephard, and Chib (1998)) 

and efficient method of moments (e.g. Chernov, Gallant, Ghysels, and Tauchen (2003)). 

Both approaches are computationally intensive and intricate to code. Simpler method of 

moment procedures (e.g. Andersen and Sørensen (1996)) have the difficulty that they are 

sensitive to the choice of moments and can be rather inefficient. 

Recently various researchers have used the time series of realised daily QV to estimate 

parametric SV models. These models ignore the intraday effects and so are theoretically 

misspecified. Typically the researchers use various simple types of method of moments 

estimators, relying on the great increase in information available from realised statistics 

to overcome the inefficiency caused by the use of relatively crude statistical methods. The 

first papers to do this were Barndorff-Nielsen and Shephard (2002) and Bollerslev and 

Zhou (2002), who studied the first two dynamic moments of the time series V�1, V�2, ..., V�T 

implied by various common volatility models and used these to estimate the parameters 

embedded within the SV models. More sophisticated approaches have been developed by 

Corradi and Distaso (2004) and Phillips and Yu (2005). Barndorff-Nielsen and Shephard 

(2002) also studied the use of these second order properties of the realised quantities to 

estimate V1, V2, ..., VT from the time series of V1, V2, ..., VT using the Kalman filter. 

This exploited the asymptotic theory for the measurement error (15). See also the work 

of Meddahi (2002), Andersen, Bollerslev, and Meddahi (2004) and Andersen, Bollerslev, 

and Meddahi (2005). 

3.11 Forecast evaluation 

One of the main early uses of realised volatility was to provide a instrument for measuring 

the success for various volatility forecasting methods. Andersen and Bollerslev (1998a) 

studied the correlation between Vi or V�i and hi, the conditional variance from a GARCH 

model based on daily returns from time 1 up to time i − 1. They used these results to 

argue that GARCH models were more successful than had been previously understood 

in the empirical finance literature. Hansen and Lunde (2005b) study a similar type of 

problem, but look at a wider class of forecasting models and carry out formal testing of 

the superiority of one modelling approach over another. 
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Hansen and Lunde (2005a) and Patton (2005) have focused on the delicate implications 

of the use of different loss functions to discriminate between competing forecasting models, 

where the object of the forecasting is Cov (Yi − Yi−1|Fi−1). They use V�i to proxy this 

unobserved covariance. See also the related work of Koopman, Jungbacker, and Hol 

(2005). 

4 Addition of jumps 

4.1 Bipower variation 

In this short section we will review some material which non-parametrically identifies 

the contribution of jumps to the variation of asset prices. A focus will be on using this 

method for testing for jumps from discrete data. We will also discuss some work by Cecilia 

Mancini which provides an alternative to BPV for splitting up QV into its continuous and 

discontinuous components. 

Recall µ −2 {Y }t = 
� t 

�udu when Y is a BSM plus jump process given in (7). The1 0 

Y

BPV process is consistently estimated by the p × p matrix realised BPV process {Y� }, 
ctdefined in (10). This means that we can, in theory, consistently estimate [ ] and [Y d] 

−2by µ −2 {Y� } and [Y� ] − µ1 {Y� }, respectively.1 

One potential use of {Y� } is to test for the hypothesis that a set of data is con­

sistent with a null hypothesis of continuous sample paths. We can do this by asking if 

−2[Y� ]t −µ1 {Y� }t is statistically significantly bigger than zero — an approach introduced by 

Barndorff-Nielsen and Shephard (2006). This demands a distribution theory for realised 

BPV objects, calculated under the null that Y ∩ BSM with θ > 0. 

Building on the earlier CLT of Barndorff-Nielsen and Shephard (2006), Barndorff-

Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) have established a CLT which 

covers this situation when Y ∩ BSM. We will only present the univariate result, which 

has that as ζ � 0 so 

t 

θ2ζ−1/2 ({Y� }t − {Y }t) � µ 2
�

(2 + �) 
� 

dBu, (30)1 u
0 

where B Y , the convergence is in law stable as a process and→→

2� = 
⎛
β /4

⎜ 
+ β − 5 √ 0.6090. 
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This result, unlike Theorem 1, has some quite technical conditions associated with it in 

order to control the degree to which the volatility process can jump; however we will 

not discuss those issues here. Extending the result to cover the joint distribution of the 

estimators of the QV and the BPV processes, they showed that 

−2 −2 

ζ−1/2 

� 
µ1 {Y� }t − µ1 {Y }t 

� 
L 

�� 
0 
� � 

(2 + �) 2 
�� t 

θ4 

� 

,duu[Y� ]t − [Y ]t 
� M N 

0 
, 

2 2 

a Hausman (1978) type result as the estimator of the QV process is, of course, fully 

asymptotically efficient when Y ∩ BSM. Consequently 

ζ−1/2 
⎛
[Y� ]t − µ1 L 

−2 {Y� }t

⎜ 
� N (0, 1) , (31)� � t 

� θ4 duu
0 

which can be used as the basis of a test of the null of no jumps. 

4.2 Multipower variation 

The “standard” estimator of integrated quarticity, given in (16), is not robust to jumps. 

One way of overcoming this problem is to use a multipower variation (MPV) measure — 

introduced by Barndorff-Nielsen and Shephard (2006). This is defined as 

∞t/�∪
� 

I
� 

{Y }[r] = p− lim ζ(1−r+/2) 
� 

ri 

t ,
���Y�(j−i) − Y�(j−1−i)

��
��0 

j=1 i=1 

∈where ri > 0, r = (r1, r2, ..., rI ) for all i and r+ = 
�I The usual BPV process is the 

{Y }
i=1 ri. 

[1,1]special case {Y }t = .t


If Y obeys (7) and ri < 2 then


� 
I


{Y }[r] = 
�

µri 

�� t 

θr+ du,t u 
i=1 0 

This process is approximated by the estimated MPV process 

∞t/�∪
� 

I
� 

{Y� }[
t 
r] = ζ(1−r+/2) 

� 
ri .

���Y�(j−i) − Y�(j−1−i)
��

j=1 i=1 

In particular the scaled realised tri and quadpower variation, 

−4 [1,1,1,1] −3 [4/3,4/3,4/3]µ1 {Y� }t and µ4/3 {Y� }t , 

36 



� 

�

respectively, both estimate 
� 
0 
t 

θ4 du consistently in the presence of jumps. Hence either of u

these objects can be used to replace the integrated quarticity in (31), so producing a non­

parametric test for the presence of jumps in the interval [0, t]. The test is conditionally 

consistent, meaning if there is a jump, it will detected and has asymptotically the correct 

size. Extensive small sample studies are reported in Huang and Tauchen (2005), who 

favour ratio versions of the statistic like 
−2 

ζ−1/2 

� 
µ1 {Y� }t − 1 

[Y� ]t L � N (0, 1) ,� 
[1,1,1,1] 

� 
{Y� }t 

({Y� }t)
2 

which has pretty reasonable finite sample properties. They also show that this test tends 

to under reject the null of no jumps in the presence of some forms of market frictions. 

It is clearly possible to carry out jump testing on separate days or weeks. Such tests are 

asymptotically independent over these non-overlapping periods under the null hypothesis. 

To illustrate this methodology we will apply the jump test to the DM/Dollar rate, 

asking if the hypothesis of a continuous sample path is consistent with the data we have. 

Our focus will mostly be on Friday January 15th 1988, although we will also give results 

for neighbouring days to provide some context. In Figure 5 we plot 100 times the change 

during the week of the discretised Y� , so a one unit uptick represents a 1% change, for a 

variety of values of n = 1/ζ, as well as giving the ratio jump statistics �Bi/V�i with their 

corresponding 99% critical values. 

In Figure 5 there is a large uptick in the D-mark against the Dollar, with a movement 

of nearly two percent in a five minute period. This occurred on the Friday and was a 

response to the news of a large fall in the U.S. balance of payment deficit, which led to a 

large strengthening of the Dollar. The data for January 15th had a large V�i but a much 

smaller Bi. Hence the statistics are attributing a large component of V�i to the jump, 

with the adjusted ratio statistic being larger than the corresponding 99% critical value. 

When ζ is large the statistic is on the borderline of being significant, while the situation 

becomes much clearer as ζ becomes small. This illustration is typical of results presented in 

Barndorff-Nielsen and Shephard (2006) which showed that many of the large jumps in this 

exchange rate correspond to macroeconomic news announcements. This is consistent with 
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Figure 5: Left hand side: change in Y� during a week, centred at 0 on Monday 11th
January and running until Friday of that week. Drawn every 20 and 5 minutes. An up
tick of 1 indicates strengthening of the Dollar by 1%. Right hand side shows an index plot
of �Bi/�Vi, which should be around 1 if there are no jumps. Test is one sided, with criticial
values also drawn as a line.

the recent economics literature documenting significant intraday announcement effects,

e.g. Andersen, Bollerslev, Diebold, and Vega (2003).

4.3 Grids

It is clear that the martingale based CLT for irregularly spaced data for the estimator of

the QV process can be extended to cover the BPV case. We define

{YGn
}t =

tj�t�

j=1

��Ytj−1
− Ytj−2

�� ��Ytj − Ytj−1

�� p� {Y }t.
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Using the same notation as before, we would expect the following result to hold, due to 

the fact that HG is assumed to be continuous, 
−2 −2 

ζ−1/2 

� 
µ1 {YGn }t − µ1 {Y }t 

� 
L 

�� 
0 
�� 

(2 + �) 2 
�� t �γHG � 

θ4 

� 

du . 
[Y� ]t − [Y ]t 

� MN 
0 2 2 γu 

u
u

0 

[1,1,1,1]The integrated moderated quarticity can be estimated using µ −4 {Y� }t , or a grid 1 

version, which again implies that the usual feasible CLT continues to hold for irregularly 

spaced data. This is the expected result from the analysis of power variation provided by 

Barndorff-Nielsen and Shephard (2005b). 

Potentially there are modest efficiency gains to be had by computing the estimators 

of BPV on multiple grids and then averaging them. The extension along these lines is 

straightforward and will not be detailed here. 

4.4 Infinite activity jumps 

The probability limit of realised BPV is robust to finite activity jumps. A natural question 

to ask is: (i) is the CLT also robust to jumps, (ii) is the probability limit also unaffected 

by infinite activity jumps, that is jump processes with an infinite number of jumps in any 

finite period of time. Both issues are studied by Barndorff-Nielsen, Shephard, and Winkel 

(2004) in the case where the jumps are of Lévy type, while Woerner (2004) looks at the 

probability limit for more general jump processes. 

Barndorff-Nielsen, Shephard, and Winkel (2004) find that the CLT for BPV is affected 

by finite activity jumps, but this is not true of tripower and high order measures of vari­

ation. The reason for the robustness of tripower results is quite technical and we will 

not discuss it here. However, it potentially means that inference under the assumption 

of jumps can be carried out using tripower variation, which seems an exciting possibility. 

Both Barndorff-Nielsen, Shephard, and Winkel (2004) and Woerner (2004) give results 

which prove that the probability limit of realised BPV is unaffected by some types of 

infinite activity jump processes. More work is needed on this topic to make these result 

definitive. It is somewhat related to the parametric study of Äıt-Sahalia (2004). He shows 

that maximum likelihood estimation can disentangle a homoskedastic diffusive component 

from a purely discontinuous infinite activity Lévy component of prices. Outside the like­

lihood framework, the paper also studies the optimal combinations of moment functions 
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� 

for the generalized method of moment estimation of homoskedastic jump-diffusions. Fur­

ther insights can be found by looking at likelihood inference for Lévy processes, which is 

studied by Äıt-Sahalia and Jacod (2005a) and Äıt-Sahalia and Jacod (2005b). 

4.5 Testing the null of no continuous component 

In some stimulating recent papers, Carr, Geman, Madan, and Yor (2003) and Carr and 

Wu (2004), have argued that it is attractive to build SV models out of pure jump processes, 

with no Brownian aspect. It is clearly important to be able to test this hypothesis, seeing 

if pure discreteness is consistent with observed prices. 

Barndorff-Nielsen, Shephard, and Winkel (2004) showed that 

ζ [2/3,2/3,2/3]−1/2 
�
{Y� }t [Y ct]t 

�
− 

has a mixed Gaussian limit and is robust to jumps. But this result is only valid if θ > 0, 

which rules out its use for testing for pure discreteness. However, we can artificially add 

a scaled Brownian motion, U = θB, to the observed price process and then test if 

−1/2 
�

[2/3,2/3,2/3] 2
�

ζ {Y� + U� }t − θ t

is statistically significantly greater than zero. In principle this would be a consistent 

non-parametric test of the maintained hypothesis of Peter Carr and his coauthors. 

4.6 Alternative methods for identifying jumps 

Mancini (2001), Mancini (2004) and Mancini (2003) has developed robust estimators of 

[Y ct] in the presence of finite activity jumps. Her approach is to use truncation 

∞t/�∪�⎛
Yj� − Y(j−1)� 

⎜2 
I(
��Yj� − Y(j−1)� 

�� < r� ), (32) 
j=1 

where I (.) is an indicator function. The crucial function r� has to have the property 

−1 −1that 
�

ζ log ζ r � 0. It is motivated by the modulus of continuity of Brownian motion 

paths that almost surely 
Ws − Wt

lim sup 
|

−1��0 0�s,t�T 
�

2ζ log ζ

| 
= 1. 

|t−s|<� 
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This is an elegant theory, which works when Y ∩ BSM. It is not prescriptive about the 

tuning function r� , which is an advantage and a drawback. Given the threshold in (32) 

is universal, this method will throw out more returns as jumps during a high volatility 

period than during a low volatility period. 

Äıt-Sahalia and Jacod (2005b, Section 7 onwards) provides additional insights into 

these types of truncation estimators in the case where Y is scaled Brownian motion plus a 

homogeneous pure jump process. They develop a two-step procedure, which automatically 

selects the level of truncation. Their analysis is broader still, providing additional insights 

into a range of power variation type objects. 

5 Mitigating market frictions 

The semimartingale model of the frictionless, arbitrage free market is a fiction. When 

we use high frequency data to perform inference on either transaction or quote data then 

various market frictions can become important. O’Hara (1995), Engle (2000), Hasbrouck 

(2003) and Engle and Russell (2005) review the detailed modelling of these effects. In­

evitably such modelling is quite complicated. 

With the exception of subsection 2.9, we have so far mostly ignored frictions by think­

ing of ζ as being only moderately small. This is ad hoc and it is wise to try to more 

formally identify the impact of frictions. In this context the first econometric work was 

carried out by Fang (1996) and Andersen, Bollerslev, Diebold, and Labys (2000) who used 

so-called signature plots to assess the degree of bias caused by frictions using a variety of 

values of ζ. The signature plots we draw show the square root of the time series average 

of estimators of Vi computed over many days, plotting this against ζ. If the log-price 

process was a pure martingale then we would expect the plot to have roughly horizontal 

lines. 

Hansen and Lunde (2006) have reviewed the literature on the effect of market frictions 

on realised QV statistics. Their broad conclusions are that for thickly traded stocks: (i) for 

returns measured over 10 to 20 minute returns using mid-quotes the central limit theories 

based on no noise give good approximations to the reality, (ii) for returns measure over 1 

to 10 minutes, noise becomes important but it is empirically realistic to view the noise as 
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independent of Y , (iii) for higher frequency data the situation is much more complicated. 

Econometricians have recently started to try to use higher frequency data to estimate 

[Y ], taking into account the effect of market frictions. All the work we have seen assumes 

independence of Y with the frictions. Important approaches are (a) subsampling by Zhou 

(1996), Zhang, Mykland, and Äıt-Sahalia (2005), Zhang (2004) and Äıt-Sahalia, Mykland, 

and Zhang (2005), (b) point process by Large (2005), (c) kernels by Barndorff-Nielsen, 

Hansen, Lunde, and Shephard (2004). It is unclear how this rapidly evolving literature 

will settle in the next few years. Particularly important contributions need to be made 

in the multivariate case where the effects of market frictions are most readily felt. 

6 Conclusions 

This paper has reviewed the literature on the measurement and forecasting of uncertainty 

through quadratic variation type objects. The econometrics of this has focused on realised 

objects, estimating QV and its components. Such an approach has been shown to provide 

a leap forward in our understanding of time varying volatility and jumps, which are crucial 

in asset allocation, derivative pricing and risk assessment. A drawback with these types of 

methods is the potential for market frictions to complicate the analysis. Recent research 

has been trying to address this issue and has introduced various innovative methods. 

There is still much work to be carried through in that area. 
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cesses. Unpublished paper: Department of Economics, Princeton University. 

Aı̈t-Sahalia, Y. and J. Jacod (2005b). Volatility estimators for discretely sampled Lévy pro­
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