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1 Introduction

A key problem in financial econometrics is the modeling, estimation and forecasting
of conditional return volatility and correlation. Having accurate forecasting models
for conditional volatility and correlation is important for accurate derivatives pricing,
risk management and asset allocation decisions. It is well known that conditional
volatility and correlation are highly predictable. An inherent problem with modeling
and forecasting conditional volatility is that it is unobservable, which implies that
modeling must be indirect. Popular parametric models for latent volatility include
the ARCH-GARCH family, the stochastic volatility family, and the Markov-switching
family. In these models volatility is usually extracted from daily squared returns,
which are unbiased but noisy estimates of daily conditional volatility. High frequency
data is rarely utilized. The estimation of these models, however, often give unsatis-
factory results. In particular, forecasts are imprecise. Moreover, standardized returns
generally have fat-tails which has led to the search for appropriate error distributions
that can adequately capture empirical return distributions. Furthermore, multivari-
ate modeling of volatility and correlation can be extremely difficult and practical
models are often only feasible for very low dimensions.
An exciting new area of research involves estimating, modeling and forecasting

conditional volatility and correlation using high frequency intra-day data. The justifi-
cation for using high frequency data follows from recent research that shows that daily
conditional volatility and correlation can be accurately estimated using so-called real-
ized volatility and correlation measures, which are based on summing high frequency
squared returns and cross products of returns. Now, instead of using complicated
models for unobserved volatility one can use more straightforward models for ob-
served volatility. This use of high frequency data has the potential of revolutionizing
the way volatility and correlation are modeled and forecasted.
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This part of the lecture surveys the recent literature on modeling and forecasting
realized variance and correlation using high frequency intra-day returns. Section 2
describes the construction of realized variance measures. Section 3 reviews the theo-
retical literature linking realized variance measures to quadratic variation processes
derived from continuous-time arbitrage free price processes. The asymptotic distribu-
tion theory for realized variance measures is discussed in section 4. Sections 5, 6 and
7 survey some of the recent empirical literature on modeling and forecasting realized
variance measures for foreign exchange and equity returns. Section 8 concludes with
suggestions for future research.

2 Construction of Realized Variance

Let pi,t denote the log-price of asset i at time t, where each asset’s log price has been
aligned to a common regularly spaced time clock (e.g., every 5 minutes or every 30
minutes). In the multivariate context, let pt = (p1,t, . . . , pn,t)

0 denote the n×1 vector
of log prices at time t. Let ∆ denote the fraction of a trading session associated with
the implied sampling frequency, and let m = 1/∆ denote the number of sampled
observations per trading session. For example, if prices are sampled every 30 minutes
and trading takes place 24 hours per day then there are m = 48 5-minute intervals
per trading day and ∆ = 1/288 ≈ 0.0035. If prices are sampled every 5 minutes and
trading takes place 6.5 hours per day (e.g. the NYSE trades from 9:30 am EST until
16:00 p.m. EST) then there are m = 78 5-minutes intervals per trading day and
∆ = 1/78 ≈ 0.0128. Let T denote the number of days in the sample. Then there will
be a total of mT observations on each asset i = 1, . . . , n.
The intra-day continuously compounded (cc) return on asset i from time t to t+∆

is defined as
ri,t+∆ = pi,t+∆ − pi,t, i = 1, . . . , n

The n× 1 vector of cc returns from time t to t+∆ is defined as

rt+∆ = pt+∆ − pt
For notational simplicity, the daily returns are denoted using a single time subscript
t, so that1

ri,t = ri,t−1+∆ + ri,t−1+2∆ + · · ·+ ri,t−1+m∆, i = 1, . . . , n

rt = rt−1+∆ + rt−1+2∆ + · · ·+ rt−1+m∆

Realized variance (RV) for asset i (i = 1, . . . , n) on day t is defined as

RVi,t =
mX
j=1

r2i,t−1+j∆, t = 1, . . . , T

1This is the end-of-day return from the end of day t− 1 until the end of day t.
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Realized volatility (RVOL) for asset i on day t is defined as the square root of realized
variance:

RVOLi,t =
p
RVi,t

Realized log-volatility (RLVOL) is the natural logarithm of RVOL:

RLV OLi,t = ln(RVOLi,t)

The n× n realized covariance (RCOV) matrix on day t is defined as

RCOVt =
mX
j=1

rt−1+∆r0t−1+∆, t = 1, . . . , T

It is clear that RVi,t = [RCOVt]i,i and RCOVi,j,t = [RCOVt]i,j . The n × n matrix
RCOVt will be positive definite provided n < m; that is, provided the number of
assets is less than the number of intra-day observations. The realized correlation
between asset i and asset j is computed using

RCORi,j,t =
[RCOVt]i,jq

[RCOVt]i,i × [RCOVt]j,j
=

[RCOVt]i,j
RVOLi,t ×RVOLj,t

Given daily measures of RV and RCOV, the corresponding non-overlapping mea-
sures over h days are computed as

RV h
i,t =

hX
j=1

RVi,t, t = h, 2h, . . . , T/h

RCOV h
i,t =

hX
j=1

RCOVt, t = h, 2h, . . . , T/h

2.1 Practical Problems in the Construction of RV

There are a number of practical problems in the construction of RV measures. The
foremost problem is the choice of sampling frequency ∆ (or number of observations
per day m). As will be shown below, the consistency of RV measures as estimators
of underlying volatility depend on ∆ → 0 (m → ∞). However, it is not possible to
sample continuously. As a result, RV measures contain measurement error. This point
is emphasized in Bandi and Russell (2003), and they propose a data-based method
for choosing ∆ that minimizes the MSE of the measurement error. Additionally,
as discussed in Bai, Russell and Tiao (2000), various market microstructure effects
(bid/ask bounce, infrequent trading, calendar effects etc.) induce serial correlation
in the intra-day returns ri,t+∆ which may induce biases in RV measures. One way of
correcting for these biases is to filter the intra-day returns using simple MA or AR
models prior to constructing RV measures. These issues will be further discussed in
the sections below.
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3 Quadratic Return Variation and Realized Vari-

ance

Two fundamental questions about RV are:

Q1 What does RV estimate?

Q2 Are RV estimates economically important?

To answer these questions, in a series of papers, Andersen, Bollerslev, Diebold and
Labys (2001, 2003), hereafter ABDL, and Barndorff-Nielsen and Shephard, (2002a,b,
2004a,b), hereafter BNS, have rigorously developed a theory connecting realized vari-
ance measures to quadratic return variation process derived from continuous time
arbitrage-free log-price process. The general results apply to log-price processes be-
longing to the class of processes called special semi-martingales. Most of the contin-
uous time processes utilized in financial models, including Itô diffusions, jump and
mixed jump diffusion, are in this class.
To illustrate the main results, consider the univariate case and let p(t) denote the

univariate log-price process for a representative asset defined on a complete proba-
bility space (Ω, F, P ), evolving in continuous time over the interval [0, T ]2. Let Ft be
the σ−field reflecting information at time t such that Fs ⊆ Ft for 0 ≤ s ≤ t ≤ T. If
p(t) is in the class of special semi-martingales then it has the representation

p(t) = p(0) +A(t) +M(t), A(0) =M(0) = 0 (1)

where A(t) is a predictable drift component of finite variation, and M(t) is a local
martingale. Note that the predictability of the drift process, A(t), allows for stochastic
evolution. A detailed discussion of this type of decomposition is given in Protter
(1990) and its economic significance is discussed in Back (1991). For notational
convenience, let the unit interval denote one trading day. Then for mT a positive
integer indicating the number of return observation obtained by sampling m = 1/∆
times per day for T days, the continuously compounded return on asset i over the
period [t−∆, t] is

r(t, t−∆) = p(t)− p(t−∆), t = ∆, 2∆, . . . , T

The daily cc return is
r(t, t− 1) = p(t)− p(t− 1)

and the cumulative return from 0 until t is

r(t) = p(t)− p(0)

2The following results generalize to the multivariate setting. See ABDL (2003) for details.
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Using the notation from BNS (2002a), the quadratic variation (QV) of the return
process at time t is defined as

[r](t) = p lim
m−1X
j=0

{p(sj+1)− p(sj)}2 (2)

where 0 = s0 < s1 < · · · < sM = t and the limit is for the mesh size

max
1≤j<m

|sj − sj−1|→ 0 as m→∞

The QV process (2) measures the realized sample path variation of the squared re-
turn process. It is a unique and invariant ex-post realized volatility measure that is
essentially model free.
The definition of QV implies the following convergence result:

RVt
p→ [r](t)− [r](t− 1) ≡ QVt, as m→∞ (3)

That is, daily RV converges in probability to the daily increment in QV. This answers
the first question Q1.
As noted by ABDL (2001, 2003), QVt defined in (3) is is related to, but distinct

from, the daily conditional return variance. Specifically, they show that if

(i) the price process in (1) is square integrable;

(ii) the mean process A(t) is continuous;

(iii) the daily mean process, {A(s)−A(t− 1)}s∈[t−1,t], conditional on information at
time t is independent of the return innovation process, {M(u)}u∈[t−1,t],

(iv) the daily mean process, {A(s) − A(t− 1)}s∈[t−1,t], is a predetermined function
over [t− 1, t],

then for 0 ≤ t− 1 ≤ t ≤ T

var(r(t, t− 1)|Ft−1) = E[QVt|Ft−1] (4)

That is, the conditional return variance equals the conditional expectation of the daily
QV process. This result implies that QVt is central to volatility measurement and
forecasting. Furthermore, the ex post value of RVt is an unbiased estimator for the
conditional return variance var(r(t, t− 1)|Ft−1) :

E[RVt|Ft−1] = E[QVt|Ft−1] = var(r(t, t− 1)|Ft−1)

These results provide an answer the second question Q2.
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ABDL (2003) argue that restrictions on the conditional mean process required for
the result (4) allow for realistic price processes. In particular, the price process is
allowed to exhibit deterministic intra-day seasonal variation. The mean process can
be stochastic as long as it remains a function, over the interval [t− 1, t], of variables
in Ft−1. Also, leverage effects caused by contemporaneous correlation between return
innovations and innovations to the volatility process are allowed.
For the class of continuous-time Itô processes characterized by the stochastic dif-

ferential equation
dp(t) = µ(t)dt+ σ(t)dW (t) (5)

where W (t) is a Wiener process (standard Brownian motion), stronger results may
be obtained. For this process, the daily return may be represented as

r(t, t− 1) =
Z t

t−1
µ(s)ds+

Z t

t−1
σ(s)dW (s)

In addition, the daily increment to QV has the form

QVt =

Z t

t−1
σ2(s)ds = IVt

where IVt denotes daily integrated variance (IV). IV is central to certain models of

option pricing with stochastic volatility (e.g., Hull and White (1987)). Since RVt
p→

QVt, it follows that for the Itô process

RVt
p→ IVt

ABDL (2003) further show that if mean process, µ(s), and volatility process, σ(s),
are independent of the Wiener process W (s) over [t− 1, t] then

r(t, t− 1)|σ{µ(s), σ(s)}s∈[t−1,t] ∼ N

µZ t

t−1
µ(s)ds, IVt

¶
(6)

where σ{µ(s), σ(s)}s∈[t−1,t] denotes the σ−field generated by (µ(s), σ(s))s∈[t−1,t].Given
that

R t
t−1 µ(s)ds is generally very small for daily returns and that RVt is a consistent

estimator of IVt, the result in (6) implies that daily returns should follow a normal
mixture distribution with RVt as the mixing variable. If there are jumps in (5), then it

is still the case that RVt
p→ IVt but returns are no longer conditionally normally dis-

tributed. As will be discussed in more detail below, ABDL demonstrate empirically
that daily returns standardized by realized volatility

r(t, t− 1)
RVOLt

are approximately normally distributed which provides evidence that returns may be
appropriately modeled by a jumpfree diffusion process.
The results presented above are for univariate returns. However, the results hold

for multivariate returns as well. See ADBL (2001, 2003) for full details.
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4 Asymptotic Distribution Theory for Realized Vari-

ance

Another fundamental question about RV is:

Q3 How precise is RV?

To help understand the answer to this question, consider the continuous diffusion
process (5) where µ(t) is predictable and of finite variation and the σ(t) process is
independent of the Brownian motionW (t). For this diffusion process, the consistency
of RVt for IVt relies on the sampling frequency per day, ∆, going to zero. This
theoretical convergence result, of course, is not attainable in practice as it is not
possible to actually sample continuously. However, the theory suggests that one
might want to sample as often as possible to get the most accurate estimate of IVt.
Unfortunately, market microstructure frictions will eventually dominate the behavior
of RV as∆→ 0 which suggests that there is a practical lower bound on∆ for observed
data. As a result, for ∆ > 0, RVt will always be a noisy estimate of IVt. The error
for a given ∆ may be represented as

ui,t(∆) = RVi,t − IVt (7)

BNS (2001) derive the asymptotic distribution of the error (7) as ∆ → 0, or,
equivalently, as m = 1/∆ → ∞. For the diffusion model (5), under the assumption
that mean and volatility processes are jointly independent of W (t) they show that

√
m

ui,t(∆)p
2 · IQi,t

=
√
m
(RVi,t − IVi,t)p

2 · IQi,t

d→ N(0, 1)

where

IQi,t =

Z t

t−1
σ4(s)ds

is the integrated quarticity (IQ). This result shows that RVi,t converges to IVi,t at rate√
m, and that asymptotic distribution of RVi,t is mixed-normal since IVi,t is random.

Furthermore, BNS show that IQt may be consistently estimated using the following
scaled version of realized quarticity (RQ)

m

3
RQi,t =

m

3

mX
j=1

r4i,t+∆

Therefore, the feasible asymptotic distribution for RVi,t is

RVi,t − IVi,tq
2
3
·RQi,t

A∼ N (0, 1) (8)
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This result suggests the following estimated asymptotic standard error for RVi,t

cSE(RVi,t) =
vuut2

3

mX
j=1

r4i,t+∆

Using straightforward delta-method arguments, BNS also derive the asymptotic
distribution of RVOLi,t

RVOLi,t −
p
IVi,tq

2
12
· RQi,t

RVi,t

A∼ N (0, 1) (9)

which suggests the feasible estimated standard error for RVOLi,t

cSE(RVi,t) =
s
2

12
· RQi,t

RVi,t

BNS find that the finite sample distribution of RVi,t and RVOLi,t can be quite far
from their respective asymptotic distributions for moderately sized m. BNS (2003)
derive the asymptotic distribution of RLV OL2i,t,

RLV OL2i,t − ln(IVi,t)q
2
3
· RQi,t

RV 2
i,t

A∼ N (0, 1) (10)

and show that the finite sample behavior of RLV OL2i,t is closer to its asymptotic
distribution than the finite sample behavior of RVi,t and RVOLi,t. As a result, the
log-based approximation (10) is likely to be preferred for constructing standard errors
and confidence intervals in practice. This conjecture is consistent with the empirical
evidence in ABDL (2001) who find that the unconditional distribution of RVOL is
approximately log-normal.
BNS (2004) extend the above asymptotic results to cover the multivariate case,

providing asymptotic distributions for RCOVt and RCORi,j,t, as well as realized
regression estimates. These limiting distributions are much more complicated than
the ones presented above, and the reader is referred to BNS (2004) for full details
and examples.

5 Empirical Analysis of Realized Variance

Much of the published empirical analysis of RV has been based on high frequency
data from two sources: The Trades and Quotation (TAQ) data for equity returns; and
Olsen and Associates proprietary FX data sets for foreign exchange returns. Most
studies of RV utilize the Olsen FX data. This is primarily due to the fact that the FX
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market for the major currencies is highly liquid and trades actively 24 hours per day.
This guarantees many quotes per day per currency. For example, there are on average
about 4,000 daily quotes for the DM/$ and about 2,000 daily quotes for the Yen/$
in the Olsen data sets. Also, FX quotes are revised constantly even in the absence of
trading and this mitigates the negative autocorrelation induced by infrequent trading.
These features make the FX data well suited for the analysis of RV. In contrast, the
stocks covered by the TAQ data have varying amounts of liquidity. The U.S. equity
markets are most active during the NYSE trading hours (9:30 a.m. EST to 4 p.m.
EST). However, not all stocks are actively traded and so are not well suited for RV
analysis. As a result, most studies of RV using equity tend to focus on a few actively
traded stocks. The most comprehensive analysis of RV for equity to date only utilizes
the 30 stocks in the Dow Jones Industrial average.
Before surveying the empirical analysis of RV, the following sections give more

detail on the Olsen and TAQ data.

5.1 The Olsen FX Data

A number of authors have analyzed realized variance measures of foreign exchange
returns computed from the either the Olsen HFDF-1993, HFDF-1996, Olsen HF-2000
data sets3. These data sets were made available for use in three conferences on the
statistical analysis of high frequency data sponsored by Olsen and Associates. The
Olsen HFDF-2000 data is the most commonly used data set, and it is briefly described
here. This data set contains spot exchange rates sampled every 5 minutes for the
U.S. dollar ($), the Deutschemark (DM), Swiss Franc (CHF), British Pound (BP),
and the Japanese yen (Yen) over the period December 1, 1986 through June 30, 1999.
The raw data consist of all interbank bid/ask indicative (non-binding) quotes for the
exchange rates displayed on the Reuters FXFX screen during the sample period. The
5-minute DM/$ and Yen/$ returns over the sample period are constructed by Olsen
Data following Dacorogna et al. (1993). Each quote consists of a bid and an ask
price together with a time stamp to the nearest even second. After filtering the data
for outliers and other anomalies using a proprietary filter technology, the log-price
at each 5-minute tick is obtained by linearly interpolating from the average of the
log-bid and the log-ask quotes for the two closest ticks, and the 5-minute cc return is
computed as the difference in the log-price.
Prior to the computation of the realized variance quantities, the 5-minute return

data is often further restricted to eliminate non-trading periods, weekends, holidays,
and lapses of the Reuters data feed. The FX market is a 24 hour market but slows
considerably during the weekend. As a result, the weekend period from Friday 21:05
GMT until Sunday 21:00 GMT is eliminated from the sample. Further, the following
holidays are commonly removed: Christmas (December 24-26), New Year’s (Decem-
ber 31- January 2), July 4th, Good Friday, Easter Monday, Memorial Day, Labor

3These data sets may be purchased directly from Olsen Data AG (www.olsendata.com).
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Author Series Sample Period T m
AB (1998a) DM/$, Yen/$ 10/1/87-9/30/93 260 288
AB (1998b) DM/$, Yen/$ 10/1/87-9/30/93 260 288
ABDL (2000) DM/$, Yen/$ 12/1/86-12/1/96 2,445 48
ABDL (2001) DM/$, Yen/$ 12/1/86-11/30/96 2,449 288
ABDL (2003) DM/$, Yen/$ 12/1/86-6/30/99 3,045 48
ABDM (2005) DM/$, Yen/$ 12/1/86-6/30/99 3,045 48
BNS (2002a) DM/$ 12/1/86-11/30/96 2,449 various
BNS (2002b) DM/$ 12/1/86-11/30/96 2,449 288
Maheu et. al. (2002) DM/$ 12/1/86-12/1/96 2,465 288

Table 1: Summary of authors using Olsen data

Day, and Thanksgiving and the day after. In addition, days that contain long strings
of zero or constant returns (caused by data feed problems) are also eliminated.
Table 1 below summarizes how a number of authors have analyzed the various

Olsen data sets.

5.2 The TAQ Data

Most studies of RV measures to date have utilized the Olsen FX data. Only a
few authors have studies RV measures computed from high frequency equity returns.
Most of these authors use data from Trade and Quotation (TAQ) database. The TAQ
data files contain intra-day trade and quotation information for all securities listed on
the New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and the
National Association of Security Dealers Automated Quotation system (NASDAQ).
The data start in January 1993 and is available monthly on DVD-ROM. The most
active period for equity markets is during the trading hours of the NYSE between
9:30 a.m. EST until 4:00 p.m. EST. Most studies of RV measures restrict attention
to these trading hours.
Andersen, Bollerslev, Diebols and Ebens (2001), hereafter ABDE, provide the

most comprehensive analysis of RV measures based on the TAQ data. They compute
and analyze RV measures for the 30 stocks in the Dow Jones Industrial Average
(DJIA) over the period January 2, 1993 through May 29, 1998 (T = 1, 336 days).
Equity returns are generally subject to more pronounced market microstructure

effects (e.g., negative first order serial correlation caused by bid-ask bounce effects)
than FX data. As a result, equity returns are often filtered to remove these mi-
crostructure effects prior to the construction of RV measures. A common filtering
method involves estimating an MA(1) or AR(1) model to the returns, and then con-
structing the filtered returns as the residuals from the estimated model.
Table 2 below summarizes how a selection of authors have analyzed the TAQ data.
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Author Series Sample Period T m
AB (2001) Dow Jones 30 stocks 10/1/87-9/30/93 1,366 79
Bandi et. al. (2003) IBM 2/1/2002-2/28/2002 1/12 various
Hansen et. al. (2005) Dow Jones 30 stocks 1/29/2001-12/31/2004 986 various

Table 2: Summary of authors using TAQ data

RVD RVY RVOLD RVOLY RLV OLD RLV OLY RCOV RCOR
Mean .529 .538 .679 .684 -.449 -.443 .243 .435
Variance .234 .272 .067 .070 .120 .123 .073 .028
Skewness 3.71 5.57 1.68 1.87 .345 .264 3.78 -.203
Kurtosis 24.1 66.5 7.78 10.4 3.26 3.53 25.3 2.72

Table 3: Summary statistics for daily RV measures. Source ABDL (2001).

6 Empirical Analysis of FX Returns

The properties of RV variance measures for FX returns from the Olsen data are
studied in a number of papers by Andersen, Bollerslev, Diebold and Labys. The
main results from these papers are summarized in this section.

6.1 Unconditional Distribution of RV measures

ABDL (2001, 2003) study the properties of RV measures (RVi,t, RV OLi,t, RLV OLi,t,
RCOVij,t, RCORij,t) for the DM/$ and Yen/$ returns over the ten year period from
December 1986 through December 1996. In ABDL (2001) they compute RV measures
using 5-minute returns (m = 228), and in ABDL (2003) they compute RV measures
using 30-minute returns (m = 48). ABDL (2001) focus on the distributional prop-
erties of RV measures, whereas ABDL (2003) focus on modeling and forecasting RV
measures.
Table 3 below gives summary statistics for the RV measures, and Figure 1 shows

kernel density estimates of the distributions. The distributions of RVt, RV OLt and
RCOVt are non-normal and skewed right, whereas the distributions of RLV OLt and
RCORt appear to be approximately normal. The apparent non-normality of RVt
and RVOLt cast some doubt on the accuracy of the asymptotic distribution theory
developed for these measures by BNS (2002). However, the approximate normality
of RLV OLt is in line with the asymptotic theory developed by BNS (2003).
Table 4 shows the sample correlation matrix between the RV measures. The

measures of volatility between the two currencies are highly positively correlated.
That is, when the volatility of DM/$ is high the volatility of Yen/$ also tends to be
high. As ABDL (2001) point out, this suggests a common factor driving volatility for
the two currencies. Interestingly, the volatility measures are also positively correlated
with the correlation measures. ABDL call this the “correlation-in-volatility” effect.
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Figure 1: Distributions of daily realized exchange rate volatilities and correlations.
Source: ABDL (2001). 12



RVY RVOLD RVOLY RLV OLD RLV OLY RCOV RCOR
RVD .539 .061 .552 .860 .512 .806 .341
RVY 1.00 .546 .945 .514 .825 .757 .234
RVOLD 1.00 .592 .965 .578 .793 .383
RVOLY 1.00 .589 .959 .760 .281
RLV OLD 1.00 .604 .720 .389
RLV OLY 1.00 .684 .294
RCOV 1.00 .590

Table 4: Correlation matrix for daily RV measures. Source: ABDL (2001)

In particular, high RV seems to increase the RCOV and RCOR measures. This effect
is illustrated in Figure 2, which shows kernel density estimates of RCORt conditioned
on high and low volatility days.

6.2 Accuracy of RV Measures

BNS (2002), using the same Olsen FX data as ADBL (2001), investigate the accuracy
of RV measures. In particular, using intra-day DM/$ returns they compute RVt for
values of m ranging from 1 to 288 as well as approximate 95% confidence intervals
based on the log-approximation (). Figure reproduces these results for the first 9
days of the dataset. Two features stand out: (1) the confidence intervals narrow as
m increases as predicted by theory; (2) when RVt is low it is estimated precisely, and
when RVt is large it is not estimated very precisely.

6.3 Conditional Distribution of RV Measures

Since RV measures are close connected to unobserved conditional volatility and corre-
lation, the properties of the conditional distribution of RV measures gives information
about the distribution of conditional volatility and correlation. Figure 4 shows time
series plots of RVOLi,t (i = D,Y ) and RCORDY,t, and Figure 5 shows the sample
autocorrelations (SACFs) of these measures. Both RVOLi,t and RCORDY,t vary
considerably over time. The slow decay of the SACFs reveal very strong persistence
in these measures suggestive of long-memory or even unit root behavior.
ABDL (2001) reject the presence of unit roots in RV OLi,t and RCORDY,t. How-

ever, they find strong evidence for long-memory behavior. Recall, a stationary process
yt has long memory, or long range dependence, if its autocorrelation function behaves
like

ρ(k)→ Cρk
−α as k →∞

where Cρ is a positive constant, and α is a real number between 0 and 1. Thus the
autocorrelation function of a long memory process decays slowly at a hyperbolic rate.
Granger and Joyeux (1980) and Hosking (1981) independently showed that a long
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Figure 2: Distributions of Realized Correlations: Low Volatility vs. High Volatility
Days. Source: ABDL (2001).
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Figure 3: Daily RV, plotted against m, and 95% confidence intervals computed from
asymptotic distribution. Source: BNS (2002).

memory process yt can also be modeled parametrically by extending an integrated
process to a fractionally integrated process:

(1− L)d(yt − µ) = ut

where L denotes the lag operator, d is the fractional integration or fractional difference
parameter, µ is the expectation of yt, and ut is a stationary short-memory disturbance
with zero mean. It can be shown that when |d| > 1/2, yt is non-stationary; when
0 < d < 1/2, yt is stationary and has long memory; when −1/2 < d < 0, yt is
stationary and has short memory, and is sometimes referred to as anti-persistent.
The fractional integration parameter d may be estimated non-parametrically using
the log-periodogram regression of Geweke and Porter-Hudak (1983), or it may be
estimated parametrically from a fully specified fractional ARIMA model.
Table 5 shows estimates of the fractional differencing parameter, d, for the RV

measures obtained from the GPH log-periodogram regression. The typical estimate
of d is around 0.4 which indicates stationary long-memory behavior in all of the RV
measures. ABDL (2003) use this evidence for long memory to build simple forecasting
models for RLV OLi,t.
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Figure 4: Time Series of Daily Realized Volatilities and Correlations. Source: ABDL
(2001).
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Figure 5: Sample autocorrelations of realized volatilities and correlations. Source:
ABDL (2001).

RVD RVY RVOLD RVOLY RLV OLD RLV OLY RCOV RCORbd .356 .339 .381 .428 .420 .455 .334 .413

Table 5: Long memory parameter estimates for daily RV measures. Source ABDL
(2001).
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Figure 6: Scaling laws under temporal aggregation. Source: ABDL (2001).

6.4 Temporal Aggregation and Scaling Laws

ABDL (2001) investigate the conditional distribution of RV measures at different
levels of aggregation (h = 5, 10, 15 and 20 days) and establish some simple scaling
laws that further reinforce the evidence for long-memory behavior. They note that
for the class of fractionally integrated models, the fractional differencing parameter
d is invariant under aggregation. They compute log-periodogram estimates of d for
the RV measures for different values of h and find little difference from the estimates
based on h = 1. In addition, they compute h−fold partial sums of the form

[xt]h =
hX

j=1

xh(t−1)+j, t = 1, 2, . . . , h/2

and make use of the fact that if xt is fractionally integrated with parameter d then

var([xt]h) = c · h2d+1 (11)

for some constant c. This result implies that plots of the logarithm of the sample
variances of the partial sums of RVt versus the logarithm of the aggregation level
h should be linear. Figure 6 reproduces this plot taken from ABDL (2001), and
indicates strong evidence for the long-memory scaling law (11).
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6.5 Returns Standardized by RV

ABDL (2000) study the properties of returns standardized by RV measures computed
from 30-minute returns. They motivate the analysis by assuming daily returns rt may
be decomposed following a standard conditional volatility model

rt = σtεt (12)

where σt represents the unobservable standard deviation of returns conditional on
time t information, and εt ∼ iid (0, 1). They study the properties of raw returns rt,
as well as estimates of the standardized returns

ε̂t =
rt
σ̂t

where σ̂t represents either a RV or normal-GARCH(1,1) estimate of σt. The normal-
GARCH(1,1) model has the form

σ2t = ω + αε2t−1 + βσ2t−1

where εt ∼ iid N(0, 1).
Figure 7 illustrates the differences between RV and normal-GARCH(1,1) estimates

of σ2t . The top panel shows squared returns, the middle panel shows the normal-
GARCH(1,1) estimates, and the bottom panel shows the RV estimates. From (12),
the squared returns are r2t = σ2t ε

2
t and so E[r2t ] = σ2t since E[ε

2
t ] = 1 by assump-

tion. Although r2t is an unbiased estimate for σt, it is clearly a very noisy estimate.
Comparing the GARCH and RV estimates of σ2t , it can be seen that the GARCH
estimates are quite a bit smoother than the RV estimates. The GARCH estimate
of σ2t is essentially an exponentially weighted average of squared returns starting at
t− 1, and does not make use of information between t− 1 and t. The RV estimate,
in contrast, focuses exclusively on high frequency squared returns between t− 1 and
t. As a result, it can more accurately estimate volatility at time t than the GARCH
model.
Table 6 and Figure 8 summarize the distributions of the unstandardized and

standardized returns. Unstandardized daily returns tend to be roughly symmetric
but leptokurtic. The returns standardized by the normal-GARCH(1,1) model are
also roughly symmetric and slightly less leptokurtic. This is a typical finding with
normal-GARCH models, which has motivated the use of GARCH models with fat-
tailed innovations. The returns standardized by RVOLt, in contrast, are approx-
imately normally distributed. This result supports the theoretical prediction from
a jumpless continuous-time diffusion model that returns standardized by RV should
be normally distributed. It also supports the mixture-of-distributions-hypothesis for
returns originally proposed by Clark (1973) and further developed by Tauchen and
Pitts (1983) and Taylor (1986).
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Figure 7: Time Series of Alternative Volatility Measures. Source: ABDL 2000.
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Figure 8: Normal QQ-plots for daily returns and returns standardized by RV mea-
sures. Source: ABDL (2000).
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rt
rt

σ̂GARCHt

rt
RVOLt

DM/$ Y/$ DM/$ Y/$ DM/$ Y/$
Mean -.007 -.009 -.002 -.011 -.007 .007
Std. Dev. .710 .705 1.00 1.00 1.01 .984
Skewness .033 .052 -.027 -.139 .015 .002
Kurtosis 5.40 7.36 4.75 5.41 2.41 2.41
Correlation .659 .661 .661

Table 6: Descriptive statistics for returns. Source: ABDL (2000)

Figure 9 shows scatterplots of the daily DM/$ and Yen/$ returns, as well as
scatterplots of returns standardized by RVOLt and returns standardized usingµ

ε̂D,t

ε̂Y,t

¶
= RCOV

−1/2
t

µ
rD,t

rY,t

¶
where RCOV

1/2
t is the Choleski factorization of the 2× 2 realized covariance matrix.

The unstandardized returns are positively correlated with a correlation coefficient
of 0.66. The bivariate distribution is clearly non-normal. One approach to model-
ing a non-bivariate bivariate distribution is through the use of copulas4. However,
copula methods may not be necessary. The bivariate distribution of returns stan-
dardized by RVOLt appears to be approximately bivariate normal with a correlation
of about 0.66, and the distribution of returns standardized by RCOV

1/2
t appears to

be approximately bivariate normal with no correlation.
Daily returns are approximately uncorrelated over time but squared and abso-

lute returns exhibit substantial autocorrelation. The high persistence in squared
returns, for example, indicates time varying conditional volatility in support of (12)
where σt is modeled with a GARCH process. Figure 10 shows the sample autocor-
relations of unstandardized squared returns, returns standardized by RVOLt and
returns standardized by RCOV

1/2
t . The squared returns standardized by RVOLt are

essentially uncorrelated, but the cross products ε̂D,tε̂Y,t exhibit slight autocorrelation.
This autocorrelation in the cross products is eliminated for the returns standardized
by RCOV

1/2
t .

6.6 Modeling and Forecasting Realized Variance

Traditional statistical approaches to modeling and forecasting daily conditional volatil-
ity treat conditional volatility as unobservable. Commonly used models for describing

4See chapter 19 in Zivot and Wang (2005) for an introduction to modeling bivariate distributions
with copulas.
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Figure 9: Scatterplots of returns and returns standardized by RV measures. Source:
ABDL (2000).
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Figure 10: Sample autocorrelations of squared returns and squared returns standard-
ized by RV meausres. Source: ABDL (2000).
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daily returns are the normal-GARCH(1,1) model

rt = σtεt, εt ∼ N(0, 1)

σ2t = ω + αε2t−1 + βσ2t−1

and the log-normal stochastic volatility (SV) model

rt = σtεt, εt ∼ N(0, 1) (13)

lnσ2t = ω + β lnσ2t−1 + σuut, ut ∼ N(0, 1)

In both models, the daily conditional variance σ2t is unobserved and is allowed to
evolve stochastically over time. The unobservability of σ2t complicates the estima-
tion of the models, particularly the SV model whose likelihood function conditional
on observed returns must be formed by integrating out the unobserved conditional
volatility. The problem become much worse with multivariate models, and practi-
cal multivariate models must be of very low dimension. Another drawback of the
daily GARCH and SV models is that forecasts of σt+1 based on information at time
t cannot accommodate the information in intra-day data. GARCH and SV models
may be specified directly using intra-day data, but doing so requires accounting for
intra-day seasonalities and other market microstructure effects. Furthermore, these
models often do not forecast as well as models specified for daily data and they cannot
forecast very well beyond a day.
ABDL (2000) and ABDL (2003) argue that modeling and forecasting conditional

volatility based on RV measures has many advantages over traditional approaches.
The main advantage is that RV measures may be treated as observable estimates of
conditional volatility. This allows the use of simple time series models (e.g. ARMA
models) for describing the behavior of observed RV measures. In the multivariate
context, the observability of RV measures allows for the possibility of modeling and
forecasting very high dimensional covariance matrices.
ABDL (2003) illustrate the modeling and forecasting of RV measures using a sys-

tem of three exchange rates (DM/$, Yen/$, Yen/DM) taken from the Olsen data.
Making use of the empirical result that the logarithm of realized volatility is approx-
imately normally distributed, they consider modeling and forecasting

yt =

 RLV OLD/$,t

RLV OLY/$,t

RLV OLY/D,t

 (14)

where RLV OLi,t (i = D/$, Y/$, Y/D) is computed from equally spaced 30-minute
returns. The system (14) may be used as a model for the elements of the 2×2 realized
covariance matrix

RCOVt =

µ
RVD/$,t RCOVD/$,Y/$,t

− RVY/$,t

¶
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since, by triangular arbitrage,

RCOVD/$,Y/$,t =
1

2

¡
RVD/$,t +RVY/$,t −RVY/D,t

¢
ABDL (2003) fit various models for yt using the in-sample period 12/1/86 -

12/1//96, and construct forecasts for the out-of-sample period 12/2/96 - 6/30/99.

6.6.1 Long-Memory VAR Model

In ABDL (2001), it was shown that RLV OLi,t exhibits long-memory behavior. Us-
ing the GPH estimator, ABDL (2003) report estimates of the fractional integration
parameter d to be close to 0.4 for the different elements of yt. Figure 11 shows the
sample autocorrelations for the elements of yt as well as the sample autocorrela-
tions of the fractionally differenced series (1− L)0.4RLV OLi,t. The autocorrelations
for RLV OLi,t decay very slowly whereas the autocorrelations of (1−L)0.4RLV OLi,t

die out quite quickly. In addition the elements of yt are all moderately positively
correlated.
Based on the above results, ABDL (2003) propose the simple fractionally differ-

enced VAR(5) model to model and forecast yt :

Φ(L)(1− L)0.4(yt − µ) = εt

εt ∼ iid N(0,Ω)

Φ(L) = 1−Φ1L− · · ·−Φ5L
5

ABDL denote this model VAR-RV. They fit the model using daily data for yt over
the ten year period 12/1/86 - 12/1/96. They do not report the estimates of the
VAR(5) model parameters. However, they mention that the lag length of the VAR
was chosen to capture dynamic effects that may be present up a week. Also, they
mention that the VAR(5) model has an approximate diagonal structure that is not
much different than a system of stacked univariate AR(5) models for each element of
(1− L)0.4(yt − µ).

6.6.2 Alternative Forecasting Models

ABDL consider the following alternative forecasting models for yt :

1. VAR-ABS: VAR(5) fit to |rt|
2. AR-RV: univariate AR(5) fit to (1− L)0.4RLV OLi,t

3. Daily GARCH(1,1): normal-GARCH(1,1) fit to daily returns ri,t

4. Daily RiskMetrics: exponentially weighted moving average model for r2i,t with
λ = 0.94
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Figure 11: Sample autocorrelations of RLV OLi,t and (1 − L)0.4RLV OLi,t. Source:
ABDL (2003).
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5. Daily FIEGARCH(1,1): univariate fractionally integrated exponential GARCH(1,1)
fit to ri,t

6. Intra-day FIEGARCH deseason/filter: univariate fractionally integrated expo-
nential GARCH(1,1) fit to 30-minute filtered and deseasonalized returns r̃i,t+∆.

6.6.3 Forecast Evaluation and Comparison with Alternative Models

ABDL compute out-of-sample forecasts from models described above over the period
12/2/96 - 6/30/99. Figure 12 illustrates the forecasting accuracy of the preferred
VAR-RV model for yt, and Figure 13 shows illustrates the forecasting accuracy of
the daily GARCH(1,1) models. The VAR-RV forecasts track actual RV remarkably
well, whereas the daily GARCH forecasts are much smoother. Both forecasts are
based on lagged estimates of conditional volatility. The VAR-RV model uses lagged
realized volatilities which are based on intra-day data and are accurate estimates of
conditional volatility, whereas the GARCH model uses lagged squared returns which
are very noisy estimates of conditional volatility.
ABDL evaluate the RV forecasts using the so-called Mincer-Zarnowitz regression

RV OLi,t = b0 + b1 \RVOL
V AR−RV
i,t + b2 \RVOL

model

i,t + errort (15)

where \RVOL
V AR−RV
i,t denotes the 1-day-ahead out-of-sample forecast of RVOLi,t

based on the VAR-RV model, and \RVOL
model

i,t denotes the 1-day-ahead out-of-sample
forecast of RV OLi,t based on an alternative model. If VAR-RV is the best forecasting

model, then one should find that the R2 from (15) using just \RVOL
V AR−RV
i,t is higher

than the R2 from (15) when using any other model. In addition, if VAR-RV is an
unbiased forecasting model, then one should find that b0 = 0, b1 = 1 and b2 = 0. Using
(), ABDL find that, indeed, the VAR-RV model is the best forecasting model. For
in-sample regressions, they find that () estimated with just RV-VAR has the highest
R2. Moreover, they rarely reject the null hypothesis that b0 = 0, b1 = 1 and b2 = 0.
They find similar results for out-of-sample regressions.
ABDL provide evidence that their VAR-RV model also produces accurate h−step

ahead forecasts. Figure 14, reproduced from ABDL (2003), shows RVt for the DM/$
as well as forecasts from the VAR-RV model and the GARCH(1,1) model for four
35 day episodes. The first 25 days shows one-day-ahead in-sample forecasts, and the
remaining 10 days shows h−day ahead forecasts. Notice how the VAR-RV model
tracks RVt both in-sample and out-of-sample, whereas the GARCH models performs
quite poorly.
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Figure 12: Realized volatility and 1-day-ahead out-of-sample VAR-RV forecasts.
Source: ABDL (2003).
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Figure 13: Realized volatility and 1-day-ahead out-of-sample forecasts from daily
GARCH model. Source: ABDL (2003).
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Figure 14: Realized volatility and h-step-ahead out-of-sample forecasts from VAR-RV
and daily GARCH models. Source: ABDL (2003).
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Figure 15: Unconditional distribution of RLV OLt from Alcoa returns. Source: ABDE
(2001).

7 Empirical Analysis of Equity Returns

This section briefly summarizes the results of ABDE (2001) who study RV measures
computed for the 30 DJIA stocks. They study the distribution of RV measures, but
do not consider modeling and forecasting. The results are quite similiar to those
found by ABDL (2000, 2001, 2003) for the Olsen FX returns.

7.1 Unconditional Distribution of RV Measures

ABDE compute and analyze univariate and multivariate RVmeasures (RVi,t, RV OLi,t,
RLV OLi,t, RCOVij,t, RCORij,t) for the 30 stocks in the DJIA over the period Jan-
uary 2, 1993 through May 29, 1998 (T = 1, 336 days). They align all intra-day
returns to a common 5-minute clock starting at 9:30 a.m. EST until 4:30 p.m. EST
giving m = 79 5-minute returns each day. The total data set contains 3, 237, 420
observations. Returns are de-meaned and MA(1)-filtered prior to the construction of
the RV measures.
The unconditional distributions of the RV measures are similar to those found

for the Olsen FX data. The distributions ofRVi,t, RV OLi,t and RCOVij,t are non-
normal and right skewed, whereas the distributions of RLV OLi,t and RCORij,t are
approximately normal. See Figures 15 and 16.

7.2 Conditional Distribution of RV Measures

Figures 17 and 18 show a representative time series of RLV OLi,t and its sample au-
tocorrelation function. There is clearly high persistence and evidence of long memory
behavior.
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Figure 16: Unconditional distribution of RCORij,t from Alcoa and Exxon returns.
Source: ABDE (2001).

Figure 17: Time series of RLV OLi,t from Alcoa returns. Source: ABDE (2001).

Figure 18: Sample autocorrelations of RLV OLt. Source: ABDE (2001).
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Figure 19: RCORij,t computed from Alcoa and Exxon returns. Source: ABDE (2001).

Figure 20: Sample autocorrelations of RCORij,t computed from Alcoa and Exxon
returns. Source: ABDE (2001).

Similarly, Figures and show a representative time series of RCORij,t and its
sample autocorrelations. The correlations are extremely variable and persistent, and
also show evidence of long memory behavior.
As with the FX RV measures, the equity RV measures also follow the scaling law

(11) implied by a long memory process.

7.3 Returns Standardized by RV

Daily equity returns are highly non-normal and right skewed. However, daily returns
standardized by RVOLi,t are approximately normally distributed. This is illustrated
for a representative stock in Figure 21.
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Figure 21: Density estimate for daily returns standardized by RVOLt. Source: ABDE
(2001).

8 Directions for Future Research

In their forthcoming Handbook of Financial Econometrics chapter “Parametric and
Nonparametric Volatility Measurement,” Andersen, Bollerslev and Diebold (2005)
conclude with the following:

In the last ten years, there has been a movement toward the use of
newly-available high frequency asset return data, and away from restric-
tive and hard-to-estimate parametric models toward flexible and compu-
tationally simple nonparametric approaches. Those trends will continue.
Two related, directions for future research are apparent: (1) continued
development of methods for exploiting the volatility information in high-
frequency data, and (2) volatility modeling and forecasting in the high-
dimensional multivariate environments of practical financial economic rel-
evance. The realized volatility concept readily tackles both: it incorpo-
rates the powerful information in high-frequency data while dispensing
with the need to actually model the high-frequency data, and it requires
only the most trivial of computations, thereby bringing within reach the
elusive goal of accurate and high-dimenstional volatility measurement,
modeling and forecasting.
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