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Abstract

We present a time series model that integrates properties from Lévy-type and
multifractal models. Formally it is a stochastic volatility model with discrete time
steps, t-distributed return innovations and a stochastic cascade for the volatility
process. This model reproduces very well different stylized facts which cannot be
reproduced together by other classes of models. We also present an estimation
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as an extension of the generalized method of moments.
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1 Introduction

Statistical properties of return data in finance have been extensively studied during the
last years. Currently, properties like leptokurtosis, stochastic volatility effects, occurrence
of extremes, seasonalities, and scaling behaviour are well established for different time
horizons in the univariate case and refered to as stylized facts. Another well known
empirical phenomenon is the so called smile effect, also linked to leptokurtosis. Many
extensions of the Black-Scholes model have been studied in view of reproducing those
empirical phenomena. Still, it is difficult to reproduce all these properties at all time
horizons simultaneously with a single dynamics model. In particular most of the currently
favored models are not able to reproduce both the heavy-tailed return distribution at
short time horizons and the long-term autocorrelation structure of absolute returns. This,
however, is important for applications as hedging and option pricing.

Time series models, especially (G)ARCH models and variants, were extensively used
in the eighties and nineties to reproduce the stylized facts, mainly volatility clustering and
leptokurtosis. This type of model has the advantage of being more easily estimated, and
of working pretty well for daily data and a single time horizon. However, shortcomings
show up when intra-day data are used or when several time horizons are considered
simultaneously. They have been addressed by various ad-hoc extensions of ARCH-type
models, with moderate success.

The strength of (G)ARCH-type models is their relative simplicity, due to the fact
that volatility is a deterministic function of the previous returns as well as its own past.
This is however a severe limitation of modelling, and models involving an additional noise
term in the volatility have been considered. The main shortcoming of the corresponding
models, so-called (discrete time) stochastic volatility models, was due to the fact that the
stochastic term in the volatility makes practically impossible a direct maximum likelihood
estimation of the parameters.

In the community of financial mathematics, continuous time models were also used
during the last years to model some stylized facts. One of these are the jump-diffusion
models, for which discrete versions can also be considered. They are able to reproduce
almost every return distribution at a fixed time horizon but they fail to reproduce the
interrelation between time horizons, which mainly manifests in scaling behavior.

Another approach are multifractal processes. The problem of this type of models is the
fact that the process of interest is in general not a semi-martingale. By construction they
reproduce well scaling behavior and volatility autocorrelation but they fail in reproducing
well the tails of the return distributions at all time horizons.

In this paper we propose a model that unifies, in the point of view of the ability to
reproduce stylized facts, discrete versions of jump-diffusion and multifractal models. The
result is a volatility model that we will call stochastic cascade model (SCM). It contains
a finite cascade in the volatility process, which is actually a finite-level approximation
of a ’pure’ continuous multifractal model, as well as heavy-tailed innovations εt. From a
practical perspective our approach can be justified by the fact that observations are always
discrete. We admit, however, that the thorough formulation of the time-continuous limit
of the model may not be an easy task.

The model was first presented in [2], but up to now there was no way of estimating
the model parameters. The version we present here has only three adjustable parameters
and can therefore be considered as very parsimonious. Because of the presence of heavy
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tailed return innovations and a multiplicative cascade for the volatility process, this model
integrates important properties from Lévy-type and multifractal models.

To estimate the parameters we present a method based directly on the stylized facts
(‘stylized facts estimation method’, SFEM). It could be considered in some sense as an
extension of the generalized method of moments. We can show that indeed both, heavy
tails in returns and the volatility cascade are required to reproduce well the shape of the
return distributions at different time horizons, scaling properties and the long range of
the volatility autocorrelation.

The paper is outlined as follows. In section 2 we briefly describe the data and revisit
the important stylized facts of financial time series. In section 3 we give a brief overview
over jump-diffusion models and multifractal models and their discrete approximations.
In section 4 the SCM is described into details. An estimation procedure based on the
stylized facts is presented in 5 together with some results, and section 6 concludes.

2 Stylized facts revisited

2.1 The data

We investigate a high-frequency price series of USD/DEM spot rates. Before revising the
stylized facts the following preliminary steps have been performed: collection and filtering,
regularization and transformation to logarithmic middle prices, and deseasonalization.
They are described in turn.

2.1.1 Collection and filtering

The data set consists of tick–by–tick data originating mainly from Reuters, collected and
filtered by Olsen Data. It consists of a large part of the quotes emitted, but not all since
the market coverage of the data providers it not complete and depends on the region of
the world. The high-frequency series are irregularly spaced; they start in January 1987
and end in December 1998. A single quote at time t consists of a bid price, pBid

t , and an
ask price, pAsk

t . In a first step the data are cleaned by means of a special filter, described in
[7] and that tries to take peculiarities of the financial market into account. Among others
it corrects for decimal errors caused by the transmission line and removes automatically
generated fake quotes during inactive periods used by market participants to test the
transmission channel. Since the filter only removes a small fraction of quotes, the filtered
time series is still irregularly spaced, and the total amount of data points is quite high
(about 10 million).

2.1.2 Regularization and transformation to logarithmic middle prices

To reduce the data we use linear interpolation to transform the time series into a regularly
spaced one with step size δ equal to 5 minutes. Since we are not interested in effects related
to the bid–ask spread, we work with middle logarithmic prices xt defined as

xt =
log

(
pBid

t · pAsk
t

)
2

. (1)
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Figure 1: USD/DEM prices from January 1987 to December 1998.

Returns with respect to a time horizon ∆T are then defined as the difference of middle
logarithmic prices:

rt[∆T ] = xt − xt−∆T . (2)

2.1.3 Deseasonalisation

Practically any financial time series exhibit seasonalities. The most striking one is the
absence of any activity during weekends, which causes a weekly seasonality in the auto-
correlation function of lagged absolute returns. With high frequency data the problem of
seasonality becomes much more important and more difficult to handle because the entire
form of the weekly activity pattern has to be taken into account. In the autocorrelation
function of hourly absolute returns, the weekly and daily periods can be distinguished, as
shown in [7, 1]. Deseasonalization is done by time transformation. The autocorrelation
of absolute returns of the resulting time series decays very smoothly, see Figure 3.

2.2 Heavy tails of the returns distribution

This fact was first observed by Mandelbrot in [14] and Fama in [11] for certain financial
time series, and since that time, many models have been proposed to reproduce heavy
tailed returns. It is well known that at sufficiently high frequencies, the return distribu-
tion becomes heavy tailed, with also a high peakedness at the center as well as a skew to
the left. However, due to the symmetric definition of FX rates, the latter is pretty small
in the present case. This fact is illustrated in the table below. The kurtosis1 appears as
a decreasing function of the time interval. See also figure 2.

Summary statistics for USD/DEM:

1defined here by E[(r(∆t)−E[r(δt)])4]
σ(r(∆t))4] − 3, so that the normal distribution has a kurtosis of 0.
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∆t Mean Median Variance Skewness Kurtosis
1 hour -2.611331e-006 1.455549e-007 1.249252e-006 1.093956e-002 8.929781e+000
6 hours -1.554108e-005 -6.716262e-006 7.928494e-006 5.835062e-002 5.580481e+000
24 hours -6.302301e-005 -2.532633e-005 3.241831e-005 9.915957e-003 2.549666e+000
1 week -3.220495e-004 -2.901334e-004 1.623375e-004 6.981845e-003 1.051265e+000

The tail index2 of the returns distribution has been estimated in several papers (see
for example [17, 6]), and the conclusion of them was a tail index somewhere between 3
and 4 if ∆t ≈ 1 hour.
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Figure 2: Left: Log density of hourly USD/DEM returns compared with the log density
of a standard normally distributed random variable. Right: QQplot of the distribution of
returns with respect to a standard normal for different time intervals (1 hour, 6 hours, 1
day and 1 week)

2.3 Volatility clustering – Quasi long range dependence

Although the empirical autocorrelation function (ACF) of returns is consistent with the
hypothesis of non autocorrelation, the ACF of absolute or squared returns decays very
slowly with respect to lags, as shown on the left graphic in figure 3. The right graphic
shows the ACF of absolute returns in a double logarithmic scale, suggesting an autocor-
relation function with a hyperbolic tail.

It is common to define the realized volatility at instant ti for the time interval ∆t as:

v(ti) = v(∆t, n, p; ti) :=

(
1

n

n−1∑
j=0

|r(ti−j, ∆t)|p
) 1

p

where ti− ti−1 = ∆t and n ∈ N, p ∈ R
+, ∆t ∈ R

+ are fixed. In practice, one chooses p = 1
or 2 to have less sensitivity to extreme events.

Commonly, a slowly decreasing ACF is taken as indication for the fact that volatility
is clustered, i.e. the process of realized volatilities has not a uniform intensity, but clusters
by periods: some of high and some of low volatility.

2defined as the order of the highest finite absolute moment
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Figure 3: Left: ACF of hourly absolute returns for the data. Right: ACF of hourly
absolute returns in a double logarithmic scale for the data. Slope of the regression line:
-0.392.

2.4 Scaling properties

First, we define the structure function of the returns by

Sq(∆t) :=
∆t

N

N/∆t∑
j=1

|r(j∆t, ∆t)|q = |r(t, ∆t)|q.

Then we say that a time series of prices of length N shows scaling properties if

Sq(∆t) ∝ (∆t)τ(q) (3)

for some function τ(q).

If one looks at the behaviour of the structure function of financial data, one typically
observes a scaling behaviour with a strictly concave function τ(q). Such a behaviour is
an indication of multifractal property.

We computed Sq(∆t) for several values of q and ∆t on our data, and the values
seem to follow a linear function of log(∆t) showing thus scaling behaviour in very good
approximation (see the left graphic on figure 4). We then made a (standard) linear
regression for each fixed q and the slopes of the different regression lines were then plotted,
giving the values of τ(q) in (3) (see the right graphic on figure 4).

2.5 Market heterogeneity

The foreign exchange (FX) market is a global over-the-counter market characterized by
a geographical repartition of agents having different risk profiles, institutional contraints,
etc. The heterogeneous market hypothesis states that agents will react differently to the
same information. In [16] the authors focus on the time interval on which investors are
acting. The authors compute cross correlations between realized volatilities for different
time intervals ∆t for different FX rates, and they find some asymmetry in them. They
interpret this fact as evidence for the existence of a net information flow from long term
traders to short term ones. This could be seen as linked to the so-called feedback effect.
Market makers react immediately to new information. If this information is important
enough, long term traders will also react, having an effect on the volatility on greater
horizons. Finally, a feedback effect appears: market makers react again to the reaction
(or absence of reaction) of long term traders, having an impact on the short time volatility.
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Figure 4: Scaling properties for the data. Left: computation of Sq(∆t) for several values
of q and ∆t on the data. Right: values of the corresponding τ(q) obtained with a standard
linear regression on the values of the left graphic.

3 Modeling approaches

In this section we give a brief overview over two important classes of models, Lévy-type
and multifractal models. While Lévy-type models mainly take into account the heavy-
tailed return distribution, multifractal models reproduce volatility clustering quite nicely.

3.1 Jump-diffusion processes

A Levy process is a stochastic process that has by definition independent and homogeneous
increments. It is well admitted that Brownian motion provides a poor description of
the evolution of the (log) prices of financial assets. The situation is improved if one
substitutes the Brownian motion by a Lévy process, but to take into account the quasi-
long range dependence observed generally in the data, it seemed more convenient to model
the volatility itself by such a process. This kind of model can take into account heavy
tailedness of the returns as well as quasi long-range dependence. For an overview of
the question, consult the works of Barndorff-Nielsen, Shephard, Prause, Eberlein, Keller,
Mikosh, Resnick, and the references cited therein.

A discrete approximation of Lévy processes is simply given by

rt = σt εt (4)

with heavy-tailed iid-distributed innovations εt. The class of distributions of εt can be
quite general, e.g., generalized hyperbolic distributions [8, 9, 10]. In the SCM model, we
restrict ourselves to the simpler case of t-distributions.

3.2 Multifractal processes

Another type of model proposed in financial modeling is multifractal processes. Let us
cite the recent works [?, 4, 5, 15, 3, 12], where the processes considered contain stochastic
multifractality. Actually, the idea of fractal properties of financial data is much older that
those works: it has been the starting point of Mandelbrot’s seminal investigations.

Here below we present the basic notions about statistical fractality and multifractality.
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3.2.1 Definitions

The most striking idea of fractals is self-similarity. For a stochastic process this means
qualitatively that at all time scales the fluctuations should look similar after rescaling their
intensity. Following the definition of [18] we say that a stochastic process {X(t), t ∈ T}
is self-similar with index H if for all a > 0, n ∈ N, t1, . . . , tn ∈ T , we have

(X(at1), X(at2), . . . , X(atn))
d
= (aHX(t1), a

HX(t2), . . . , a
HX(tn)). (5)

Example of self-similar processes are

• Brownian motion: self-similar of index H = 1/2.

• Fractional Brownian motion (FBM) of index H ∈ (0, 1), which is a gaussian process
{X(t) | t ∈ R

+} with mean zero and covariance function

RH(t, s) =
1

2
(|s|2H + |t|2H − |s − t|2H)Var(X(1)). (6)

FBM of index H is self-similar of index H .

In a qualitative way one could define a fractal process as one for which nearly all the
trajectories have similar irregularities on all scales. To quantify the irregularity of a
deterministic function or a path of a process, one can define several singularity exponents.
One of the most popular is the Hölder exponent. More precisely, the local Hölder exponent
h(t) at point t of a process X is defined as

h(t) := lim inf
ε→0

log2 sup|u−t|<ε |X(u) − X(t)|
log2(2ε)

. (7)

For example, is can be shown that a fractional Brownian motion of index H has nearly
all trajectories characterized by h(t) ≡ H . Some other exponents can also be introduced
(using wavelets or some others more adapted to increasing processes like the case of the
cumulative distribution of a random measure, see [18] for details), and they give us a first
mean of analyzing the fractal structure of the process.

A multifractal process can be defined as a process whose path singularities are not
uniform. More precisely, if one analyses a multifractal process with some chosen exponent
α(t), t ∈ supp(X), one will find that α(.) takes a whole continuum of values and not a
single one anymore like in the case of self-similar processes. Note that since we look
at stochastic processes, the singularity exponent α(t) will also be stochastic, since it is
computed for a fixed trajectory.

3.2.2 Multifractal spectra

Once a singularity exponent α(.) has been chosen, we can define several multifractal
spectra, which will quantify which values of the singularity exponent α(.) appear on a
trajectory as well as their frequency of appearance. The Hausdorff spectrum of a process
X is defined in the following way. For all a ∈ R, let E(a) := {t |α(t) = a}. The Hausdorff
spectrum is the function

R → R : a �→ dim(E(a)) (8)
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where dim(E(a)) denotes the Hausdorff dimension of the set E(a) ∈ R. Typically, the
support of a multifractal process will be a disjoint union of very complicated sets E(a)

having a non-integer fractal dimension. By coming back to the definition of the Hausdorff
dimension, one can see that this spectrum gives some information about the frequency of
appearance of a value a for the chosen exponent α(.). One can also define other spectra
(with other notions of fractal dimension, see [18]), but the idea beyond them will be the
same.

One can see that this spectrum (or more precisely a deterministic version of it) is
generally linked (by Legendre transform) with the following scaling exponent, defined for
a process X(t) (t ∈ [0, 1] without loss of generality):

T (q) := lim inf
n→∞

−1

n
log2 EΩ[S(n)(q)],

where

Sn(q) :=

2n−1∑
k=0

exp
(
−qnα

(n)
k ln(2)

)
=

2n−1∑
k=0

2−nqα
(n)
k ,

and αn
k is the coarse singularity exponent associated to α(.) on dyadic intervals. More

precisely, if α is the Hölder exponent h defined previously and t ∈ [0, 1],

h
(n)
kn(t) := −1

n
log2

(
sup{|X(u)− X(t)| : u ∈ [(kn(t) − 1)2−n, (kn(t) + 2)2−n)})

where kn(t) is the unique k ∈ {0, . . . , 2n−1} such that t ∈ In
k , with In

k = [k2−n, (k+1)2−n),
n ∈ N. This exponent T (q) has to be put in relation with the exponent τ(q) obtained in
relation (3). One can see on a large amount of examples that typically the multifractality
of a process gives rise to a nonlinear T (q).

3.2.3 Multiplicative cascades

A particular and classical case of multifractal functions or processes is given by multi-
plicative cascades.

Let us first recall the construction of the deterministic binomial cascade. A series of
measures µi is defined through an iterative scheme, and the binomial measure is then
obtained as the limit of infinitely many iterations of this procedure.
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Figure 5: Density of the measures µ1, µ2, µ3, µ10.
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One fixes first two real numbers m0, m1 ∈ (0, 1) with m0 + m1 = 1.
At step 1, one defines the measure µ1 by splitting [0, 1] into two intervals [0, 1/2] and

[1/2, 1] and by distributing a mass m0 uniformly on [0, 1/2] and m1 on [1/2, 1]. The
numbers mi fulfill the normalisation condition m0 + m1 = 1.

At the next step we define the measure µ2 by splitting each of the intervals [0, 1/2] and
[1/2, 1] into two subintervals, [0, 1/4], [1/4, 1/2] and [1/2, 3/4], [3/4, 1], and by distributing
uniformly on [0, 1/4] a fraction m0 of the mass µ1[0, 1/2], on [1/4, 1/2] a fraction m1 of
µ1[1/1/2], and similarly by putting uniformly on [1/2, 3/4] a fraction m0 of µ1[1/2, 1] and
on [3/4, 1] a fraction m1 of µ1[1/2, 1], that is:

µ2[0, 1/4] = m0m0, µ2[1/4, 1/2] = m0m1,
µ2[1/2, 3/4] = m0m1, µ2[3/4, 1] = m1m1.

Then we continue this scheme, defining a sequence µk of peacewise uniform measures,
uniform in fact on each dyadic interval of length 2−k. Finally, if t is of the form

t =

k∑
i=1

ζi2
−i, ζi ∈ {0, 1} for all i,

for some fixed k ∈ N, then

µk+j([t, t + 2−k]) = µk([t, t + 2−k]) ∀j ∈ N,

and
µ([t, t + 2−k]) = mk−n1

0 mn1
1

where n1 =
∑k

i=1 ζi. Figure 5 illustrates the density of different measures µk (k =
1, 2, 3, 10). The measure µ is defined as the limit of this sequence (µk). By the pre-
ceeding, µ is defined for each dyadic interval and consequently, it is well defined on each
Borel set. The cumulative distribution function of µ, defined by M(t) := µ([0, t]), is
called a binomial cascade. One can see that µ has no well-defined density anymore, or
equivalently, M is nowhere differentiable.

One can generalize this construction with some chosen b ∈ N and positive real numbers
m0, . . . , mb with

∑b−1
i=0 mβ = 1 and subdivide each interval at a step into b subintervals.

One can also randomize the construction by replacing the mβ by random variables Mβ

with independence between all steps of the construction and
∑

Mβ = 1 (conservative
cascades) or only in expectation. The corresponding multiplicative cascade M(t) becomes
then a stochastic process. One can see that M(t) has a multifractal structure, in the sense
that its multifractal spectrum will take a hole range of values and not a single one. The
SCM described in the following section will contain some kind of generalization of such a
random multiplicative measure.

4 The stochastic cascade model

The stochastic cascade model introduced in [2] is motivated by an analogy between tur-
bulence and finance proposed in [13], and tries to take into account the different stylized
facts described above. It will, on the contrary of both preceeding models, be expressed in
discrete time, in the tradition of econometricians.
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The study of turbulence phenomena consists in the analysis of the velocity field of
fluids with a high Reynolds number in certain domains. Fluids having a sufficiently high
Reynolds number will show important and unstable fluctuations. At very high Reynolds
numbers, the fluid will show eddies at all spacial scales. One important phenomenon
is the so-called Richardson cascade: mechanical energy is introduced into the fluid at
large spacial scales, large eddies begin to appear, will soon break up into smaller eddies,
splitting themselves into smaller ones and so on, until a limit spacial scale at which energy
is dissipating into heat.

If one makes the following parallelism:

energy ↔ realized volatility
distance ↔ time delay

velocity at point x ↔ price at instant t

then the statistical properties of the series of interest show some similarities, and the
Richardson cascade can be put in parallel with the net information flow from long to
short time horizons.

Let us recall now the stochastic cascade model from [2]. One considers a cascade of
time horizons τ (1) > · · · > τ (m), representing the different time horizons of traders, where
τ (1) is typically of the order of one year and τ (m) of the order of a few minutes. We denote
the logarithmic return at time t by rt := rt = r(t, ∆t = τ (m)) where t = t0 + nτ (m) for
some fixed initial instant t0 and n ∈ N.

We then suppose that
rt = σtξt

where ξt are i.i.d. random variables ∼ tN , Student-t with N degrees of freedom. The
main difference between an ARCH-type model and this one is that the volatility σt is not
autoregressive anymore but is a multiplicative cascade as described below. We assign to
each time horizon a level of volatility σ

(k)
t which will be determined by the volatility at

level k − 1 as well as by a stochastic factor a
(k)
t :

σ
(k)
t = a

(k)
t σ

(k−1)
t .

We then arrive to a volatility of the form:

σ
(m)
t = σt = σ0

m∏
k=1

a
(k)
t ,

where we suppose that σ0 is a constant and {a(k)
t , k = 1, . . . , m} are random variables fol-

lowing some renewal process described below and taking into account the net information
flow from long to short time horizons.

We also suppose for simplicity that

τ (k)

τ (k−1)
= p

for some constant p < 1.
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Let us now describe the form of the different factors appearing in the volatility. We
suppose first that at the initial instant t0, all the variables a

(k)
t are generated following

independent log-normal probability distributions LN(a(k), λ2
k) (where a(k) = E[log(a

(k)
t0 )]

and λ2
k = Var

[
log(a

(k)
t0 )

]
.) Then, to pass from instant tn to tn+1 = tn + τ (m),

a
(1)
tn+1

=

{
a

(1)
tn with probability 1 − ω(1)

renewed as an independent LN(a(1), λ2
1) with probability ω(1)

for some renewal probability ω(1) that will be chosen later. In case of renewal of a
(1)
tn+1

, we

suppose that a
(k)
tn+1

is also renewed for all k > 1 following independent LN(a(k), λ2
k). In

the other case (no renewal), one supposes that

a
(2)
tn+1

=

{
a

(2)
tn with probability 1 − ω(2)

renewed as an independent LN(a(2), λ2
2) with probability ω(2)

and so on. The renewal probabilities ω(k) are chosen such that the expected time interval
between two renewals of a

(k)
t is equal to τ (k), as described below.

By construction, the number of renewals of a
(1)
t is a Bernouilli process (with time

units equal to τ (m)) of probability ω(1). It is well known that for such a process, the
success instants (here the renewal instants) Tk follow a negative binomial law and the
intervals between two consecutive successes are i.i.d. geometric of parameter ω(1). This
implies that the expected time interval between two renewals, E[Tk − Tk−1], is equal to
1/ω(1). If we want this expectation be equal to τ (1)/τ (m) time units τ (m), since moreover
τ (1)/τ (m) = p1−m, one has to impose

ω(1) = pm−1.

Let us now consider the renewals of a
(2)
t . If we denote by S

(2)
n the number of renewals

after n steps (after n time intervals of length τ (m)), and if we denote by ξ
(1)
n the indicating

random variable of a renewal at step n of the process a
(1)
t , one has

P[S(2)
n − S

(2)
n−1 = 1] = E[P[S(2)

n − S
(2)
n−1 = 1 | ξ(1)

n ]]

= ω(1) + ω(2)(1 − ω(1))
def
= ω̃(2).

Since the renewals of a
(1)
t are independent of time, it will be the same for those of the

a
(2)
t . The variables S

(2)
n −S

(2)
n−1 are thus i.i.d. Bernouilli random variables with parameter

ω̃(2), and the number of renewals with respect to time is again a Bernouilli process of
parameters ω̃(2). The expected time interval between two renewals is hence given by
1/ω̃(2), and if we want it to be equal to τ (2)/τ (m) = p2−m, we have then to impose

ω(1) + ω(2)(1 − ω(1)) = pm−2,

that is

ω(2) =
pm−2 − pm−1

1 − pm−1
.

12



One can repeat this reasoning for the following steps of the cascade. More generally, the
renewal probability of the process a

(k)
t at a given instant will be given by

ω̃(k) = ω̃(k−1) + ω(k)(1 − ω̃(k−1)),

and we will choose ω̃(k) = pm−k = τ (m)/τ (k), which implies

ω(k) =
pm−k − pm−k+1

1 − pm−k+1
, k = 2, . . . , m.

The construction of the stochastic volatility σt is similar to that of a multiplicative
measure described above, except that the different factors of the cascade keep their value
during the corresponding time interval only in mean. So this is like a multiplicative
measure in mean. Another important difference is the fact that one stops the cascade
at an elementary time scale τ (m). This has the advantage that in a discrete time setting
one can work with (non-gaussian) heavy-tailed innovations. It will be shown in the next
section that this is really necessary.

5 Estimation of the model parameters

We tried to make an estimation of some parameters in view of the three aspects:

• scaling properties;

• autocorrelation of absolute returns;

• distribution of returns.

Here below is explained the stylized facts estimation method. For each stylized fact,
one considered some distance function. The idea is the following: we calculated the
adequate quantity for some amount of simulated series, computed the mean value over
those different series, taking also into account the volatility of the quantity calculated on
simulated data. We then took the difference with the corresponding quantity calculated
on real data.

5.1 The parameters

Since we worked with hourly data, we choose to fix τ (m) = 0.5h and τ (1) ∼ 1 year as well
as p = 1/

√
2. We only selected then one point on two in the simulated series, meaning

that a simulation of length n2 = 200000 gives only 100000 selected points used for further
analysis, and corresponding to hourly ticks. It seemed that the choice of p was not so
crucial. In what follows, we fixed the value of the parameter p since it seemed that it
had few influence on the results. On the contrary, we made vary the number of degree
of freedom N in the Student innovations ξi, as well as some parameters c1, c2 chosen
in the construction of Λ2 =

∑m
i=1 λ2

i , i.e. some parameters linked with the volatility of
the stochastic volatility. More precisely, the parameters λk have been generated in the
following way. If we note γ := − log(p), we suppose that

λ2
k = γc1 + γ2kc2

13



for some parameters c1, c2. This assumption is motivated by empirical findings [13]. It
implies the following form for the variance of the logarithm of σt:

Λ2 =

m∑
i=0

λ2
i = γmc1 +

γ2

2
(m2 − m)c2.

We then made vary the parameters c1 and c2. We also supposed that σ0 is a constant.

5.2 Method of estimation

For each stylized fact mentioned above, we constructed a distance function to be min-
imized. We simulated n1 time series of length n2 (we choose in practice n1 = 20,
n2 = 200000). For each fact and each simulated time series j, we computed a matrix
of values (xi,j)i∈I,j=1...n1 (where I is some index set depending on the stylized fact consid-
ered) taken as estimates of certain quantities linked with the stylized fact itself. Beside
this vector of values, a matrix of weights (ωi,j)i∈I (with

∑n1

j=1 ωi,j = 1) was computed at
the same time, reflecting the importance (or credibility) to be given to every component
of the vector (xi,j)i∈I . A vector of mean values over the n1 simulations is then obtained
as x̄i :=

∑n1

j=1 xi,jωi,j, and a final vector of weights is obtained as the inverse of the square

roots of the following weighted variances: w̄i :=
∑n1

j=1 x2
i,jωi,j − (x̄j)

2.

Scaling properties: Concerning scaling properties, since no analytical computation
could be made (the cascade being stopped at the level τ (m) and the innovations being
non gaussian), we computed empirically the scaling exponents for q = 0.5 to 3.5 by
steps of 0.5. The method is the following. For each simulated time series, we calculated
for each fixed q the structure function Sq(∆t) (as defined in Section 2.4) for different
values of ∆t (equidistant in a logarithmic scale, from 1 to 512) and made a weighted
linear fit of log(Sq(∆t)) over log(∆t) with weights equal to Sq(∆t)/

√
V ar[|r(∆t)|q] (here

V ar[|r(∆t)|q] denotes the sample variance of the absolute returns with time interval ∆t
to the power q along a simulated time series). We then obtain for each simulation j and
each q an estimation τj(q) of τ(q) by taking the slope of the corresponding regression line.
This is the choice of the matrix (xi,j). We then take, at q fixed again, the weighted mean
of those estimations τj(q) over the n1 simulations, weighted by the respective inverse of
the corresponding standard error in the different linear fits (this is the choice of the matrix
of weights wi,j).

Volatility clustering: Concerning this fact, xi,j was simply chosen as the ACF of
absolute returns, with a maximum lag of 1000 (so here the vector x., j has a length of
1000). The weights wi,j were chosen constant (i.e. wi,j = 1/n1 for all i, j).

Distribution of log returns: We then computed the empirical cumulative distribution
functions of returns on different time intervals, so not only for one interval. This is inter-
esting because the behaviour of those different functions is also linked with multifractality
and scaling behaviour. For each computation of the distribution, we calculated it on a
grid of 2000 points. We gave more weight to the points in the tails than to those in the
center of the distribution. This was achieved by introducing, for a fixed simulation, some
weight function proportional to ωk = n2/((n − k + 1) ∗ k), where ”k” counts the points
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Figure 6: Log density of the returns for different time intervals (∆t = 1, 3, 6, 10, from the
left to the right) for data (black squares) and simulations of the model (white triangles)
with N=4 (the number of degrees of freedom), c1 = 0.03 and c2 = −0.001.

in the ordered sample of length n (in ascending order). This means that the median of
the distribution corresponds to k = n/2. The weight function is of course normalized
such that

∑
ωk = 1. The length n depends on the time horizon ∆t considered, so that n

implicitly depends on ∆t. Concerning the weights associated to the different simulations
(’wi,j’), we chose them constant.

The distance function of each stylized fact is then obtained as the Euclidian norm of
the weighted difference between the mean values vector (x̄i)i∈I over the simulations and
the corresponding values over the observations (yi)i∈I (calculated in the same way as (xi,j)
but with n1 = 1 and j ∈ {1}), that is

f := (
∑
i∈I

|x̄i − yi|2ω̄i)
1/2.

The total distance is then obtained as the (possibly weighted) sum of those distance
functions.

5.3 Results

We found a quite similar behaviour for the distances associated with long range depen-
dence and the distribution of returns. The sensitivity to different simulations of both
functions was quite reasonable, in the sense that the variation of those two functions with
respect to the three parameters c1, c2, N was relatively smooth. On the contrary, the
distance associated with the scaling properties was quite unstable, it is the function for
which we found the largest fluctuations. That is precisely on this stylized fact that there
is disagreement in the scientific community. This means that it seems better to replace
this function by the distance associated with the distribution of returns for different time
intervals. This last function also captures multifractality, and is apparently more stable.
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Figure 7: Scaling exponents for the data and 100 simulated series of the model with N=4,
c1 = 0.03 and c2 = −0.001 (left) and c1 = 0.025 and c2 = −0.0005 (right).
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Figure 8: ACF of absolute returns for the data (in black) and different simulations of the
model (red) (N=4, c1 = 0.025, c2 = −0.0005).
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Figure 9: ACF of absolute returns for the data (in black) and different simulations of the
model (in red) (N=4, c1 = 0.03, c2 = −0.001).
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Figure 10: Color-coded density plots of the distance function. The columns represent the
distance functions for ACF (left), scaling (middle left), distributions (middle right) and
total (right). The number of degrees of freedom of the t-distribution varies from 3.4 (top),
to 3.8 (bottom) in steps of 0.2. In each panel the x-axis represents c2 and the y-axis c1.
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Figure 11: Same as fig. 10 with number N of degrees of freedom varying from 4 (top) to
4.6 (bottom).
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This also means that the present dispute over scaling properties between members of the
scientific community is non well-funded because it relies on an unstable quantity.

Figures 6–9 illustrate the adequacy of the model in vue of the different stylized facts
considered.

Figures 10 and 11 presented in this paper give an illustration of the graphs of the
three types of distance functions we considered to adjust the parameters c1, c2 and N . We
made them vary as described in the table below:

Minimum value Maximum value Step
c1 0 0.09 0.005
c2 -0.006 -0.002 0.0005
N 3.4 4.6 0.2

Those values were chosen in that way after having experimented on many simulations
the sensibility of each distance function and located the zone of the parameters giving the
best estimates.

The figures show contour plots for each distance function, in a separate column, left
column for the ACF function of absolute returns, middle left column for scaling properties,
middle right for distributions as well as right column for some aggregation of the three
functions. The blue zones correspond to smaller values of the distance functions, and red
zones to higher values.

Each row corresponds to a fixed value of the number of degrees of freedom N (see
caption), the two other parameters c1, c2 varying in their respective set of values.

As explained before, we see in general that the graphs of ’ACF’ and ’distribution’
depend quite smoothly on the parameters, while the distance function relative to scaling
laws shows some instability, even with a large number of simulations.

This suggests that such a method of estimation, taking into account the distribution
as well as the decay of the ACF of absolute returns is quite promising, while an estimation
based on scaling properties seems very difficult. This is interesting since usually multifrac-
tality has been captured with the study of scaling properties. However, the distribution
of returns on different time intervals also captures the multifractal behaviour, and seems
a more stable way of estimation. Thus this is an alternative to take into account multi-
fractality in the fit of the parameters.
It seems also that the parameter N has less influence on the estimation of the optimal
value than c1, c2, since the optimal region evolves quite similarly in each row. In fact, for
a chosen ‘reasonable’ value of N , it is always possible to adapt sufficiently well c1, c2 to
have a quite good fit.

6 Conclusion

After revisiting the stylized facts, we recall and precise in more details the Stochastic
Cascade Model proposed in [2]. This model tries to take into account three statistical
properties observed usually on a lot of financial data, that is heavy tailedness of the dis-
tribution of log returns, with a tail index depending on the interval considered for the
returns, quasi long range dependence (quantified by the ACF function of absolute returns)
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as well as nonlinear scaling laws. We also propose a method of estimation of some param-
eters of the model based on the stylized facts themselves, called stylized facts estimation
methods. The results obtained suggest that such a method of estimation, taking into
account the distribution of returns for different time intervals as well as the decay of the
ACF of absolute returns is quite promising, while an estimation based on scaling proper-
ties seems very difficult. So the distribution of returns on different intervals appears as a
better alternative to the use of scaling law for the estimation of the parameters.

The next step will be the construction of a parametric test for the values of the
parameters c1, c2.
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