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Abstract

Using a new omnibus density forecast evaluation procedure, we examine various commonly

used Autoregressive Conditional Duration (ACD) models in capturing the price duration dynam-

ics of Euro/Dollar and Yen/Dollar exchange rates. The ACD models under investigation include

linear, logarithmic, Box-Cox, Exponential, Threshold, and Markov Switching ACD models with

the exponential, Weibull, generalized Gamma and Burr innovation distributions respectively. We

find that none of the ACD models can adequately capture the full dynamics of foreign exchange

rate price durations, either in sample or out of sample. However, some ACD models, particularly

the Markov switching ACD model with Burr innovations, have not only the best in-sample fit,

but also the best out-of-sample performance. We find that sophisticated nonlinear specifications

for the conditional mean duration do not help much over linear ACD models in capturing the full

dynamics of price durations, but the specification of the innovation distribution is important: the

generalized Gamma or Burr distribution performs much better than the Weibull and exponential

distributions. Moreover, it is important to relax the independence assumption for innovations

and model higher order conditional moments of price durations.

Key Words: density forecast, full dynamics, foreign exchanges, out-of-sample, price duration,

strong form ACD, weak form ACD

JEL Classification No: C4, C5, G0.
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1 Introduction

The recent widespread availability of high-frequency financial transaction data has provided

unprecedented opportunities to study various issues related to financial trading processes. A

distinct feature of such data is that they arrive at irregular random time intervals. As empha-

sized in Goodhart and O’Hara (1997) and Madhaven (2000), the waiting time between intraday

market events plays a key role for understanding the processing of private and public informa-

tion in financial markets. In finance, the models of Diamond and Verrecchia (1987) and Easley

and O’Hara (1992) provide theoretical justifications for developing time series models of inter-

trade-arrival times. The autoregressive conditional duration (ACD) model, introduced by Engle

and Russell (1998), is one of the most promising new econometric tools that focuses on the

time intervals between the occurrences of trading events. It is tailor-made for the analysis of

microstructure market issues and has been almost exclusively used to analyze high frequency

financial data.

Following Engle and Russell (1998), a number of substantive extensions to the original linear

ACD model have been made in the literature. Bauwens and Giot (2000) propose a logarithmic

ACD model, which avoids the nonnegative constraints on model parameters implied by the

linear ACD model. Dufour and Engle (2000) suggest Box-Cox and Exponential ACD models.

Fernandes and Grammig (2003) develop a family of augmented ACD models, similar in spirit to

the asymmetric GARCH models introduced by Hentschel (1995). Zhang, Russell and Tsay (2001)

propose a threshold ACD model, which allows for different duration dynamics across different

regimes. Other important ACD models include Markov chain regime switching ACD models

(Hujer, Kokot and Vuletić 2003), smooth transition and time-varying ACD models (Meitz and

Teräsvirta 2004), stochastic volatility duration models (Ghysels, Gourieroux and Jasiak 2004),

and semiparametric ACD models (Hautsch 2002; Drost and Werker 2002).

In ACD modelling, besides the specification of the conditional mean duration, it is also im-

portant to specify the innovation distribution in order to capture the full dynamics of financial

durations. Various innovation distributions have been used in the literature, including exponen-

tial and Weibull distributions, as used in Engle and Russell (1998), and Burr and generalized

Gamma distributions, as used in Grammig and Maurer (2000) and Lunde (1999) respectively.

Given a wide variety of available ACD models, it is important to examine whether some

ACD models perform better than others, and which type of model, if any, is particularly suited

in capturing financial duration dynamics. The common practice to check adequacy of an ACD

model has been using the Ljung-Box-Pierce type tests applied to estimated standardized or

squared standardized durations of an ACD model. Unfortunately, the commonly used asymp-

totic chi-square distribution for this test is invalid, due to the complicated nontrivial impact of

parameter estimation uncertainty (see Duchesne and Hong 2002 for more discussion). Several
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other specification tests for ACD models have also been proposed. They can be divided into

three categories: (i) specification tests for the innovation distribution, (ii) specification tests for

a conditional mean duration specification, and (iii) specification tests for the entire conditional

probability density of an ACD model. Fernandes and Grammig (2000) suggest the tests of the

first type. Assuming that the conditional mean duration model is correctly specified with i.i.d.

innovations, they compare a nonparametric innovation density estimator with a model-implied

parametric counterpart. Hautsch (2002) and Meitz and Teräsvirta (2004) advocate specification

tests of the second type. Hautsch (2002) use conditional moment tests and integrated condi-

tional moment tests, while Meitz and Teräsvirta (2004) propose Lagrange Multiplier (LM) type

tests. Using Diebold, Gunther and Tay’s (1998) density evaluation procedures, Dufour and Engle

(2000) and Bauwens, Giot, Grammig and Veredas (2003) consider the tests of the third type.

These procedures are easy to implement, and can provide hints to sources of model misspecifi-

cation. However, they are informal and may not deliver a decisive conclusion about the relative

performance of competing models. Moreover, the impact of parameter estimation uncertainty

on the evaluation procedure is not considered. Dufour and Engle (2000) propose an alternative

regression-based LM type test for density forecasts. However, the power of this test depends on

the choice of instrumental variables which are somehow arbitrary.

In this paper, we use a recently developed omnibus test to examine whether commonly

used ACD models can well forecast the probability density of foreign exchange price durations.

The foreign exchange market is one of the most important financial markets in the world, with

trading taking place 24 hours a day around the globe and trillions of dollars of different currencies

transacted each day. Transactions in the foreign exchange market determine the rates at which

currencies are exchanged, which in turn determine the costs of purchasing foreign goods and

assets. Density forecasts are important in many applications. As argued by Diebold et al. (1998),

Granger (1999) and Granger and Pesaran (2000), density forecasts are important for decision-

making under uncertainty when forecasters’ loss functions are asymmetric and the underlying

process is non-Gaussian. In the present context, density forecasts for the price durations of

exchange rates are particularly useful for many outstanding issues in international economics and

finance. Price durations measure how long it takes for the price of an asset to move beyond a

certain threshold. A trader might be interested in knowing this time interval as it could influence

the speed with which he places an order. Price duration models are essentially a volatility model

or more precisely the inverse of a volatility model (Engle and Russell 1997, 1998; Giot 2000) and

thus play an important role in intra-day risk management. Density forecasts for price durations

are crucial for the prediction of the price change intensity, which is important for valuing currency

options and other currency derivatives. For example, Prigent, Renault and Scaillet (2001) offer

an option pricing framework in incomplete markets by using a log ACD model to capture the

4



full dynamics of a price duration process.

Hong and Li (2004) and Egorov, Hong and Li (2004) have recently developed nonparametric

evaluation methods for a conditional density model. The test has an omnibus ability to detect

a wide range of suboptimal density forecasts. Furthermore, it explicitly takes into account the

impact of parameter estimation uncertainty on the evaluation procedure, an issue ignored in most

existing evaluation procedures for density forecasts. We emphasize that the new test checks the

entire conditional density of an ACD model rather than only the innovation distribution.

Applying the tests developed in Hong and Li (2004) and Egorov, Hong and Li (2004), we

provide a comprehensive empirical analysis of both in-sample and out-of-sample performances of

various commonly used ACD models for price durations of Euro/Dollar and Japanese Yen/Dollar

exchange rates. The ACD models under examination include linear (LINACD) logarithmic

(LOGACD), Box-Cox (BCACD), Exponential (EXPACD), Threshold (TACD), and Markov

Switching (MSACD) models. For each model, we consider four commonly used innovation

distributions—exponential, Weibull, generalized Gamma and Burr distributions. In contrast to

earlier studies, we find that none of the ACD models can adequately capture the full dynamics

of price durations of foreign exchanges, either in sample or out of sample, although the MSACD

model with Burr innovations performs best. Sophisticated nonlinear specifications for the condi-

tional mean duration (e.g., logarithmic, Box-Cox and Exponential forms) do not offer substantial

improvement over linear ACD models in capturing the full dynamics of price durations of foreign

exchanges. However, the specification of the innovation distribution is rather important: the

exponential distribution always fits data poorly while the generalized Gamma distribution per-

forms best (except that the Burr innovation performs best for the MSACD model). Moreover,

to capture the full dynamics of price durations in foreign exchange markets, it is important to

relax the i.i.d assumption for innovations and to model higher order conditional moments of price

durations. Our results are similar for both Euro/Dollar and Yen/Dollar, and for both in-sample

and out-of-sample.

In Section 2, we describe the evaluation procedures for the out-of-sample performance of

a ACD model. A class of separate inference tests is also discussed, which can reveal useful

information about where an ACD model is likely to be misspecified. In section 3, we review

a variety of ACD models and discuss their relative merits. Section 4 describes the data and

estimation results. Section 5 reports the in-sample and out-of-sample performances of the ACD

models. Section 6 concludes.
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2 Nonparametric Density Forecast Evaluation

Density forecasts have become a standard practice in many economic and financial applications.

For example, modern risk control techniques often involve some form of density forecasts. In

macroeconomics, monetary authorities in U.S. and U.K. (the Federal Reserve Bank of Philadel-

phia and the Bank of England) have been conducting quarterly surveys on density forecasts for

inflation and output growth to help set their policy instruments (e.g., inflation target). There

is also a growing literature on extracting density forecasts from options prices to obtain useful

information on otherwise unobservable market expectations (e.g., Fackler and King 1990, Jack-

werth and Rubinstein 1996, Soderlind and Svensson 1997, Ait-Sahalia and Lo 1998, Engle and

Rosenberg 2002).

One of the most important issues in density forecasts is the evaluation of the quality of den-

sity forecasts (Diebold et al. 1998, Granger 1999). Suboptimal density forecasts for important

macroeconomic variables, for example, may lead to suboptimal policy decisions (e.g., inappropri-

ate level and timing in interest rate setting), which could have adverse consequence on resource

allocations of an economy. In finance, suboptimal density forecasts may lead to misleading cal-

culation of Value at Risk in risk management, and to large errors in derivatives pricing and

hedging.

2.1 Nonparametric omnibus evaluation test

Evaluation of density forecasts is not trivial, since the probability distribution is not observable

even ex post. Suppose {Xi, i = 1, 2, · · ·} is a stationary time series with conditional density

p0(x|Ii−1), where Ii−1 = {Xi−1, Xi−2, ...} is the information available at time ti−1. In our appli-

cation, Xi will be the price duration of foreign exchange rates. For a given ACD model for Xi,

there is a model-implied conditional density

∂

∂x
P (Xi ≤ x|Ii−1, θ) ≡ p(x|Ii−1, θ),

where θ ∈ Θ is an unknown finite-dimensional parameter vector, and Θ is a parameter space.

Suppose we have a random sample {Xi}T
i=1 of size T, and we divide it into two subsets: an

estimation sample {Xi}R
i=1 of size R and a prediction sample {Xi}T

i=R+1 of size n ≡ T −R. The

former is used to estimate model parameter θ, and the latter is used to evaluate density forecasts.

To evaluate density forecasts, we use the probability integral transform of Xi with respect to the

model density, which is defined as follow:

Zi(θ) ≡
∫ Xi

−∞
p(x|Ii−1, θ) (1)

The transformed series {Zi(θ)} can be called the “generalized residuals” of model p(x|Ii−1, θ). In

an important work, Diebold et al. (1998) show that if model p(x|Ii−1, θ) is correctly specified in
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the sense that there exists some θ0 ∈ Θ such that p(x|Ii−1, θ0) coincides with the true conditional

density p0(x|Ii−1), then the sequence {Zi(θ0)} should be i.i.d. U [0, 1]. This characterization

provides a convenient approach to evaluating p(x|Ii−1, θ). Intuitively, the U [0, 1] distribution

indicates proper specification of the stationary distribution of Xi, and the i.i.d. property char-

acterizes correct specification of its dynamics. If {Zi(θ)} is not i.i.d. U [0, 1] for all θ ∈ Θ , then

p(x|Ii−1, θ) is not optimal, and there exists room to improve p(x|Ii−1, θ). Thus, p(x|Ii−1, θ) can

be evaluated by checking whether its generalized residuals is i.i.d. U [0, 1].

Most existing density forecast evaluation procedures examine the i.i.d. property and the

uniformity property separately. While this is informative about possible sources of suboptimal

density forecasts, it is preferable to use a single omnibus evaluation criteria that takes into account

deviations from both i.i.d. and U [0, 1] jointly when comparing different models. Otherwise it

may be difficult to decide which model is better in capturing the full dynamics of Xi if (e.g.) the

generalized residuals of one model has less serial dependence but displays a more non-uniform

distribution than the generalized residuals of another model.

Hong and Li (2004) developed a portmanteau in-sample evaluation procedure for a conditional

density model, and Egorov, Hong and Li (2004) extend it to an out-of-sample context. They

consider the impact of parameter estimation uncertainty and the choice of relative sample sizes

between estimation and prediction samples on the evaluation procedure, two issues ignored by

most existing evaluation procedures for density forecasts. They measure the distance between a

density model and the true density by comparing a kernel estimator ĝj(z1, z2) for the joint density

of the pair of generalized residuals {Zi(θ), Zi−j(θ)} with unity, the product of two U [0, 1] densities,

where integer j is a lag order. The kernel estimator of the joint density of {Zi(θ), Zi−j(θ)} is

given by

ĝj(z1, z2) ≡ (n− j)−1

T∑
t=R+j

Kh(z1, Ẑt)Kh(z2, Ẑt−j), j > 0, (2)

where Ẑi = Zi(θ̂), θ̂ is any
√
R-consistent estimator for θ0, Kh(z1, z2) is a boundary-modified

kernel function given by:

Kh(x, y) ≡


h−1K(x−y

h
)/

∫ 1

−(x/h)
K(u)du, if x ∈ [0, h)

h−1K(x−y
h

), if x ∈ [h, 1− h],

h−1K(x−y
h

)/
∫ (1−x)/h

−1
K(u)du, if x ∈ (1− h, 1],

(3)

and K(·) is a prespecified symmetric probability density, and h ≡ h(n) is a bandwidth such that

h → 0, nh → ∞ as n → ∞. One example of K(·) is the quartic kernel K(u) = 15/16(1 −
u2)21(|u| ≤ 1), where 1(·) is the indicator function. We will use this kernel in our application. In

practice, the choice of h is more important than the choice of K(·). Like Scott (1992), we choose
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h = ŜZn
−1/6, where ŜZ is the sample standard deviation of {Ẑt}T

t=R+1. This simple bandwidth

rule attains the optimal rate for bivariate kernel density estimation.

The modified kernel in (2) automatically deals with the boundary bias problem associated

with standard kernel estimation. The weighting functions in the denominators of the modified

kernelKh(x, y) for x in the boundary regions [0, h)∪(1−h, 1] account for the asymmetric coverage

and ensure that the kernel density estimator (3) is asymptotically unbiased uniformly over the

support [0, 1] of Zi(θ).

Hong and Li (2004) propose an in-sample test based on a quadratic form between ĝj(z1, z2)

and 1, the product of two U [0, 1] densities. This test has been extended to the out-of-sample

context in Egorov, Hong and Li (2004):

Q̂(j) ≡
[
(n− j)h

∫ 1

0

∫ 1

0

[ĝj(z1, z2)− 1]2 dz1dz2 − A0
h

]
/V

1/2
0 , j = 1, 2, · · · , (4)

where the nonstochastic centering and scaling factors

A0
h ≡

[
(h−1 − 2)

∫ 1

−1

K2(u)du+ 2

∫ 1

0

∫ b

−1

K2
b (u)dudb

]2

− 1,

V0 ≡ 2

[∫ 1

−1

[∫ 1

−1

K(u+ v)K(v)dv

]2

du

]2

,

and Kb(·) ≡ K(·)/
∫ b

−1
K(v)dv. Under suitable regularity conditions on the data generating

process {Xi}, the model p(x|Ii−1, t, θ), the estimator θ̂R, the kernel K(·), the bandwidth h, and

the relative sizes n,R between estimation and prediction samples, Q̂(j) → N(0, 1) in distribution

when p(x|Ii−1, θ) is optimal.

The use of the Q̂(j) statistics with various lag orders can reveal the lag orders at which we

have significant departures from i.i.d. U [0, 1]. To avoid the difficulty when one model has a

smaller Q̂(j) at lag j1 but another model has a smaller Q̂(j) at lag j2 6= j1, Egorov, Hong and

Li (2004) propose a portmanteau evaluation statistic

W (p) =
1
√
p

p∑
j=1

Q̂(j). (5)

For any given lag truncation order p,W (p) → N(0, 1) in distribution when p(x|Ii−1) is optimal.

This may be viewed as a generalization of the popular Box-Pierce-Ljung autocorrelation-based

portmanteau test from a linear time series context to a nonlinear time series context. It can

check misspecification in a conditional density model of Xi, rather than only misspecification in

a conditional mean model of Xi. As long as model misspecification occurs such that Q̂(j) →∞
at some lag j > 0, we will have W (p) → ∞ in probability. Therefore, W (p) can be used as an

omnibus procedure to evaluate density forecasts. Another important feature of W (p) is that any
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√
R-consistent parameter estimator θ̂R suffices. It is not necessary to use an asymptotically most

efficient estimator for θ. This is convenient, because asymptotically most efficient estimators

such as maximum likelihood estimation (MLE) or approximated MLE may be difficult to obtain.

One could choose a suboptimal but convenient estimator in implementing the test.

2.2 Diagnostic Tools

2.2.1 Diagnostics based on Generalized Model Residuals

When a density model is rejected by using Q̂(j) or W (p), it would be interesting to explore

possible reasons of the rejection. Diebold et al. (1998) illustrate how to use the histogram of {Ẑi}
and autocorrelogram in the powers of {Ẑi} to reveal sources of model misspecification. Although

informative, these graphical methods ignore the impact of parameter estimation uncertainty

in θ̂R on the asymptotic distribution of evaluation statistics, which generally exists even when

R, n → ∞. Hong and Li (2004) provide a class of rigorous separate inference procedures that

explicitly address the impact of parameter estimation uncertainty. This class of test statistics is

defined as follows:

Mz(m, l) =

[
n−1∑
j=1

k2(j/p)(n− j)ρ̂2
ml(j)−

n−1∑
j=1

k2(j/p)

]
/

[
2

n−2∑
j=1

k4(j/p)

]1/2

, m, l > 0, (6)

where ρ̂ml(j) is the sample cross-correlation between Zm
t and Z l

t−j. It is asymptotically N(0, 1)

under correct model specification. Different choices of orders (m, l) examine various dynamic as-

pects of the underlying process {Zt}. For example, the choice of (m, l) = (1, 1), (2, 2), (3, 3), (4, 4)

is sensitive to autocorrelations in level, volatility, skewness, and kurtosis of {Zt} respectively (see

Diebold et al. 1998 for related discussion). Moreover, Mz(1, 2) and Mz(2, 1) can check ARCH-

in-Mean and leverage effects respectively, which were not previously investigated in the density

forecast evaluation literature.

2.2.2 Diagnostics based on Standardized Residuals

In ACD modeling, we have Xi = ψi(θ)εi, where Xi is a duration process, ψi(θ) is a model for

the conditional expected duration E(Xi|Ii−1), and εi is the innovation. Different insight can be

obtained by examining the standardized residual ε̂i = Xi/ψi(θ̂R). For example, to see whether it is

necessary to model higher order conditional moments ofXi, one can check whether {εi} is i.i.d. To

this end, we follow Hong and Lee (2003) and consider σj(u, v) ≡ cov(eiuεi , eivεi−|j|), the covariance

function between eiuεi and eivεi−|j| . Straightforward algebra yields σj(u, v) = ϕj(u, v)−ϕ(u)ϕ(v),

where ϕj(u, v) = E(eiuεi+ivεi−|j|) and ϕ(u) = E(eiuεi) are the joint and marginal characteristic
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functions of (εi, εi−|j|) respectively. Define the empirical measure

σ̂j(u, v) = ϕ̂j(u, v)− ϕ̂j(u, 0)ϕ̂j(0, v), j = 0,±1,±2, · · ·

where ϕ̂j(u, v) = (n−|j|)−1
∑n

i=|j|+1 e
i(uε̂i+vε̂i−|j|). We consider the following class of test statistics

Mε(m, l) =

{∫ [
n−1∑
j=1

k2(j/p)(n− j)|σ̂(m,l)
j (u, v)|2

]
dW1(u)dW2(v)− Ĉ

(m,l)
0

n−1∑
j=1

k2(j/p)

}

÷

[
D̂

(m,l)
0 (1, l)

n−2∑
j=1

k4(j/p)

]1/2

, (7)

where the integer m, l ≥ 0, σ̂
(m,l)
j (u, v) = ∂m+lσ̂j(u, v)/∂

m∂l,W1(·) and W2(·) are positive and

nondecreasing weighting functions, k(·) is a kernel function,1 and the centering and scaling factors

Ĉ
(m,l)
0 =

∫
σ̂

(m,m)
0 (u,−u)dW1(u)

∫
σ̂

(l,l)
0 (v,−v)dW2(v),

D̂
(m,l)
0 = 2

∫
|σ̂(m,m)

0 (u, u′)|2dW1(u)dW1(u
′)

∫
|σ̂(l,l)

0 (v, v′)|2dW2(v)dW2(v
′).

Most commonly used kernels weigh down higher order lags. This is expected to enhance the

power of the tests in practice, because financial markets are more influenced by recent events

than by remote past events. We will use the Bartlett kernel k(u) = (1 − |z|)1(|z| ≤ 1) in our

application. The lag order p can be chosen via suitable data-driven methods. Following Hong

and Lee’s (2003) proof, we can show that for each given pair of nonnegative integers (m, l),

Mε(m, l) −→ N(0, 1) in distribution

under correct CAD model specification, provided lag order p ≡ p(n) → ∞, p/n → 0. We note

that parameter estimation uncertainty in θ̂R has no impact on the asymptotic distribution of

Mε(m, l).

The choice of (m, l) and {W1(·),W2(·)} provide much flexibility in capturing various serial

dependence of {εi}. For example, put (m, l) = (0, 0),W1(·) = W2(·) = W0(·), whereW0 : R → R+

is nondecreasing and weighs sets symmetric about 0 equally.2 Then we obtain

Mε(0, 0) =

{∫ [
n−1∑
j=1

k2(j/p)(n− j)|σ̂j(u, v)|2
]
dW0(u)dW0(v)− Ĉ

(0,0)
0

n−1∑
j=1

k2(j/p)

}

÷

[
D̂

(0,0)
0 (1, l)

n−2∑
j=1

k4(j/p)

]1/2

, (8)

1The kernel k(·) here differs from the kernel K(·) used for probability density estimation.
2A commonly used example is W0(·) = Φ(·), the N(0,1) cumulative distribution function (cdf).
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where Ĉ
(0,0)
0 = [

∫
σ̂0(u,−u)dW0(u)]

2 and D̂
(0,0)
0 = 2[

∫
|σ̂(0,0)

0 (u, u′)|2dW0(u)dW0(u
′)]2. This checks

generic serial dependence, which is useful in judging whether it is necessary to model higher

order conditional moments of duration.

Suppose {εi} is found to be serially dependent. It would be then interesting to examine the

pattern of serial dependence in {εi}. To end this, we put l = 0, and use a Dirac δ(·) function for

W1(·), with W2(·) = W0(·).3 Then

Mε(m, 0) =

{∫ [
n−1∑
j=1

k2(j/p)(n− j)|σ̂(m,0)
j (0, v)|2

]
dW0(v)− Ĉ

(m,0)
0

n−1∑
j=1

k2(j/p)

}

÷

[
D̂

(m,0)
0

n−2∑
j=1

k4(j/p)

]1/2

, (9)

where Ĉ
(m,0)
0 = R̂m(0)

∫
σ̂0(v,−v)dW0(v), D̂

(m,0)
0 = 2R̂2

m(0)
∫
|σ̂0(v, v

′)|2dW0(v)dW0(v
′), and

R̂m(0) is the sample variance of ε̂m
i .Note that σ̂

(m,0)
j (0, v) is consistent for σ

(m,0)
j (0, v) =cov[(iεi)

m, eivεi−j ].

The choice of m = 1 checks the martingale hypothesis for {εi}. In particular, it has power against

alternatives that have zero autocorrelation but a nonzero mean conditional on the εi−j, such as

some bilinear and nonlinear moving average processes. This can reveal useful information whether

a conditional mean duration model is adequate. Similarly, the choice of m = 2, 3, 4 can be used

to test whether the conditional variance, skewness and kurtosis of εi are time-varying.

3 ACD Models

ACD models, first introduced by Engle and Russell (1998), are used to study the dynamics of

arrival times between successive occurrences of trading events.

Let Xi = ti − ti−1 be the time intervals between two market events. Examples include the

time between successive transactions, the time until a price change occurs or until a prespecified

number of shares or level of turnover has been traded.4 All ACD models can be embedded in

the following framework:
Xi = ψiεi,

ψi = E(Xi|Ii−1),

εi − 1 ∼ MDS with conditional pdf f(·|Ii−1),

(10)

By construction, the innovation εi is nonnegative, with E(εi|Ii−1) = 1 and conditional pdf

f(·|Ii−1). Because εi = Xi/ψi, εi is also called as a standardized duration. The specification of

3The Dirac delta function is defined as follows: δ(u) = 0 if and only if u 6= 0 and
∫
δ(u)du = 1.

4The price, volume and turnover duration processes can naturally be obtained from the trade duration series

by dropping intervening observations from the sample, thus yielding a “thinned” or “weighted” duration process.
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an ACD model includes: (i) ψi, the conditional mean duration, and (ii) f(·|Ii−1), the conditional

distribution of εi.

For most commonly used ACD models in the literature, {εi} is assumed to be i.i.d. with

marginal pdf f(·). This may be called a strong form ACD model, following the analogy of the

strong form volatility model termed by Drost and Nijman (1993). For this class of ACD models,

all past information enters the current duration through the conditional mean duration ψi. The

dynamics of Xi is completely captured by ψi. Often, the assumption of the i.i.d. innovation is

too strong to capture financial duration dynamics (e.g., Drost and Werker 2002). Again, by

analogy with Drost and Nijman (1993), the case in which the demeaned innovation εi − 1 is an

martingale difference sequences but not i.i.d. may be called a weak form ACD model, which

allows for higher order dependence in durations. The flexibility of an ACD model lies in the rich

host of candidates for the conditional pdf of εi as well as the functional form of the conditional

mean ψi.

For a strong form ACD model, the conditional pdf of εi coincides with the marginal pdf

of εi. In this case, several innovation distributions have been used in practice: the standard

exponential, Weibull, generalized Gamma and Burr distributions:

(a) f(εi) = exp(−εi),

(b) f(εi) = γ
[
Γ

(
1 + 1

γ

)]γ

εγ−1
i exp

{
−

[
Γ

(
1 + 1

γ

)
εi

]γ}
, γ > 0,

(c) f(εi) =
γεγλ−1

i

Γ(λ)

[
Γ(λ+1/γ)

Γ(λ)

]γλ

exp
{
−

[
εiΓ(λ+1/γ)

Γ(λ)

]γ}
, λ, γ > 0,

(d) f(εi) = γ
c

(
εi

c

)γ−1 [
1 + λ

(
εi

c

)γ]−(1+λ−1)
, c = (λ)1+γ−1

Γ(1+λ−1)
Γ(1+γ−1)Γ(λ−1−γ−1)

, γ > λ > 0

where Γ(·) is the Gamma function. Note that the generalized Gamma distribution reduces to

the Weibull when λ = 1, and to the standard exponential when λ = γ = 1. When γ < 1, the

Weibull distribution assigns a higher probability than the exponential distribution to extreme

observations (very short and long durations). It also allows a non-flat hazard function, which is

constant for the exponential distribution.5 However, the Weibull hazard function is monotone:

increasing if γ < 1, and decreasing if γ > 1. A more flexible hazard function can be obtained

with the generalized Gamma distribution (e.g., Lunde 2000). It exhibits a nonmonotonic hazard

function in certain regions of the parameter space: a ∩-shaped hazard when λγ > 1 and γ < 1,

and a U-shaped hazard when λγ < 1 and γ > 1. Another distribution that has a hump-shaped

hazard function and that nests the Weibull distribution is the Burr distribution. It is used in

Grammig and Maurer (2000) to account for the stylized fact that the hazard function of some

financial durations may be increasing for small durations and decreasing for long durations. We

will consider these four innovation distributions to see which best describes the price duration of

5For a random variable X, its hazard function (or intensity function) is defined by h(x) = f(x)/S(x), where

f(·) and S(·) are the pdf and survival function of X, respectively. The survival function S(x) ≡ P (X > x) =

1− P (X ≤ x), x > 0.
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foreign exchange rates.

Another key ingredient in an ACD model is the conditional mean duration ψ(·). We consider

six most popular duration models: LINACD, LOGACD, BCACD, EXPACD, TACD and MSACD

models. The first four belong to the class of strong form ACD models and the last two belong

to the class of weak form ACD models. For a meaningful comparison of alternative ACD models

and for simplicity, we follow Dufour and Engle (2000) and Bauwens et al. (2003) to limit the

dynamic structure of the ACD models to the first lag order only.

3.1 Strong Form ACD models

3.1.1 Linear ACD models (LINACD)

Engle and Russell (1998) assume that ψi is a linear function of past durations and conditional

durations, namely,

ψi = ω + αXi−1 + βψi−1, (11)

where ω > 0, α ≥ 0 and β ≥ 0, ensuring ψi ≥ 0. This is analogous to a GARCH(1,1) model. It

can account for duration clustering, a salient feature of financial high-frequency data. However,

it has two main limitations, as pointed out by Engle and Dufour (2000). First, constraints on

the parameters are needed to ensure that the linear model does not yield negative durations.

When additional explanatory variables are added linearly to the model of (11), ψi may become

negative, which is not admissible. Second, empirical evidence suggests (e.g., Engle and Russell

1998) that a nonlinear ψi may more accurately describe the dynamics of the conditional mean

duration.

3.1.2 Logarithmic ACD models (LOGACD)

The limitations of LINACD have motivated Bauwens and Giot (2000) to introduce a LOGACD

model:

lnψi = ω + α lnXi−1 + β lnψi−1 (12)

= ω + α ln εi−1 + β′ lnψi−1

where β′ = α + β. While retaining the main characteristics of the LINACD model, this model

is more flexible because no restrictions are required on the sign of its coefficients. Furthermore,

for positive α, durations lower than the current conditional mean (so εi = Xi/ψi < 1) have a

negative effect, while long durations (εi > 1) have a positive and marginally decreasing effect

on the log of the expected duration. Thus the LOGACD model allows for nonlinear effects of

short and long durations in the conditional mean, without requiring the estimation of additional
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parameters. However, it imposes a rigid adjustment process of the conditional mean to recent

durations. For instance, because the logarithmic function asymptotically converges to minus

infinity at zero, it is likely to have an overadjustment of the conditional mean after very short

durations.

3.1.3 Box-Cox ACD models (BCACD)

To further improve upon the limitation of the LOGACD model, Dufour and Engle (2000) pro-

posed a Box-Cox transformation ACD model

lnψi = ω′ + α′(εδ
i−1 − 1)/δ + β lnψi−1 = ω + αεδ

i−1 + β lnψi−1. (13)

This includes the LOGACD model as a special case (with δ → 0). The choice of an appropriate

shock impact specification is data driven in this model (i.e., δ is estimated from data).

3.1.4 Exponential ACD models (EXPACD)

Dufour and Engle (2000) also introduce a class of EXPACD models similar in spirit to Nelson’s

(1991) EGARCH models. This allows for a piecewise linear news impact function kinked at the

mean E(εi−1) = 1:

lnψi = ω + αεi−1 + δ |εi−1 − 1|+ β lnψi−1 (14)

EXPACD models offer a captivating compromise between the need of greater flexibility and the

burden of higher complexity. For standardized durations shorter than E(εi−1) = 1, it has a slope

α− δ and an intercept ω+ δ; while for standardized durations longer than E(εi−1) = 1, the slope

and intercept are α + δ and ω − δ respectively. It can capture asymmetric behaviors in price

durations.

3.2 Weak form ACD models

3.2.1 Threshold ACD models (TACD)

Zhang, Russell and Tsay (2001) propose a TACD model that allows the conditional expected

duration ψi to be nonlinear in past information variables. The TACD model is a simple but

powerful generalization of the LINACD model, allowing different subregimes to have different

conditional means and innovation distributions. Put Rj = [rj−1, rj), j = 1, · · · , J , for a positive

integer J , where the γj, with −∞ = r0 < r1 < · · · < rJ = ∞, are thresholds. The process {Xi}
follows a J-regime threshold ACD model if, when the threshold variable Zi−d ∈ Rj,{

ψi = ωj + αjXi−1 + βjψi−1,

εi ≡ Xi/ψi ∼ f(εi; θj),
(15)
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where the delay parameter d is a positive integer. We allow parameter θ in the innovation

distribution to be different across regimes. Exogenous variables (e.g., observable market char-

acteristics, such as bid-ask spreads and volumes) as additional regressors and other functional

forms of conditional mean (e.g. linear, logarithmic, Box-Cox and exponential forms) can also be

used in (15). As documented in Zhang et al. (2001), there is a strong evidence that fast and

slow transaction periods of NYSE stocks display different dynamics. We will examine whether

this is also true of price durations of foreign exchanges. Here, we assume Zi−d = Xi−1 and focus

on a two-regime TACD model analogous to Zhang et al. (2003):{
ψi = ωj + αjXi−1 + βjψi−1,

ε
(j)
i ≡ Xi/ψi ∼ f(εi; θj),

if Xi−1 ∈ Rj, j = 1, 2, (16)

where the parameters in both conditional expected duration ψi and innovation density f(·; ·)
are allowed to vary across regimes. The innovation εi has a discrete mixture distribution. For

a given regime j, {ε(j)
i } is i.i.d. Also, {ε(j)

i } and {ε(k)
i } are independent for j 6= k. However,

the conditional distribution of εi given Ii−1 is time-varying. In our empirical study, we will also

employ a regime-adapted version of logarithmic forms for ψi.

3.2.2 Markov regime switching ACD models (MSACD)

The MSACD model, proposed by Hujer et al. (2002), allows the duration process Xi to depend

on a latent state variable Si that follows a Markov chain. This model nests many existing ACD

models. It is closely related to Markov Switching autoregressive regression models popularized

by Hamilton (1989) in econometrics. The introduction of the latent state variable Si can be

justified in the light of recent market microstructure theories. For instance, the unobservable

regime can be associated with the presence (or absence) of private information about an asset’s

value that is initially available exclusively to a subset of informed traders and only eventually

disseminates through the process of trading to the broader public of all market participants.

Hujer et al. (2003) fit a MSACD model to the Boeing stock data on NYSE and show that it

can capture several specific characteristics of intertrade durations while other ACD models fail.

In our application to price durations of foreign exchanges, we assume that there are two regimes

and the conditional mean duration ψi depends on the latent state variable Si as follows:{
lnψ

(Si)
i = ω(Si) + α(Si) lnXi−1 + β(Si) lnψi−1,

ε
(Si)
i = Xi/ψ

(Si)
i ∼ f(εi; θ(Si)).

(17)

We refer to the regime in which Si = 1 the first regime, and Si = 2 the second regime. To avoid

the computational intractability due to the dependence of the conditional mean ψi on the entire

history of data, we follow Gray (1996) to average over all regime-specific conditional expectations

according to

ψi = P (Si = 1|Ii−1)ψ
(1)
i + P (Si = 2|Ii−1)ψ

(2)
i ,
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where P (Si = j|Ii−1) is the probability that Si is in state j given the filtration Ii−1. We assume

a constant transition probability: P (Si = j|Si−1 = l) = pjl, where j, l = 1, 2, . The associated

conditional density for the price duration is given by

f(x|Ii−1) = P (Si = 1|Ii−1)f(x|Si = 1, Ii−1) + P (Si = 2|Ii−1)f(x|Si = 2, Ii−1),

where P (Si = j|Ii−1) , the ex ante probability that the data is generated from regime j at ti−1,

can be obtained by a recursive procedure described in Hamilton (1994).

By letting the parameters in the innovation distribution depend on the state variable Si,

the MSACD models allow for time-varying higher order conditional moments of Xi. TACD

models are closely related to the MSACD models. Both of them belong to the class of discrete

mixture models and allow the innovations to have time-varying conditional higher order moments.

However, their mechanisms of regime determination are different: TACD models allow switches

between different regimes to be driven by observable lagged dependent variables. It is interesting

to examine the relative performance of these two classes of models in capturing the full dynamics

of price durations of foreign exchanges.

4 Data and Estimation

We consider two intraday foreign exchange rates— Euro/Dollar and Yen/Dollar, from July 1,

2000 to June 30, 2001. Euro and Yen are two most important currencies in the world after the

U.S. dollar. The launch of Euro has been probably the most important event in the history of

the international monetary and financial system since the end of the Bretton Woods system in

the early 1970s. It has created the world’s second largest single currency area after U.S. In the

foreign exchange market, Euro/Dollar is the busiest pair of currencies: it is estimated that 40

percent of the trading is between this pair, which is twice as large as the Dollar/DM pair had, and

twice as large as the Yen/Dollar pair has. The Japanese economy was in a prolonged recession

over the last decade, and as a result, the Yen/Dollar rate might have a different dynamics from

the Euro/Dollar rate.

The data, obtained from Olsen & Associates, are indicative bid and ask quotes posted by

banks. We choose the sample period between July 1, 2000 to June 30, 2001 to wait for the market

to have stabilized after the introduction of Euro as a new currency in January 1, 1999 and to

avoid the impact of “September 11” Incident. The foreign exchange market operates around

the clock 7 days a week and the typical rate of quote arrivals differs dramatically on weekends

and weekdays and between business hours in different countries and in different time zones (e.g,

Goodhart and Figliuoli 1991, Bollerslev and Domowitz 1993, Engle and Russell 1997). To utilize

days with a common typical pattern, only data on Wednesdays are used. This subsample consists

of 52 days, and 1,264,553 observations on Euro/Dollar and 623,687 observations on Yen/Dollar.
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Although we focus on price durations, it is useful to first examine quote arrival rates and

quote durations. For our data, a typical weekday has almost 24,300 and 16,000 quote arrivals,

and on average, a quote arrives every 3.5 s and 5.5 s for Euro/Dollar and Yen/Dollar respectively,

where “s” denotes the unit of second. Figure 1 plots the histogram of raw durations up to 30

s, showing that two exchange rates share a similar pattern. The majority of quotes (about 86%

for Euro/Dollar and 67% for Yen/Dollar) arrive within 5 s of the previous quote. Clearly, the

Euro/Dollar market is more active than the Yen/Dollar market.

There is a strong seasonality in quote durations as a deterministic function of the time of the

day. It is important to deseasonalize raw duration data. Following Engle and Russell (1997),

we regress the duration on a pure time-of-day to obtain a consistent estimator of the typical

duration shape due to the time-of-day effect. Dividing durations by their estimated typical

shape thus gives “seasonally adjusted” durations. Figure 2 presents the predicted duration as a

deterministic function of the time of day. This was obtained by regressing the observed duration

on 96 time-of-day dummy variables, each per 15 minute time interval. Both Euro/Dollar and

Yen/Dollar display the same pattern of seasonality as have been revealed in previous studies of

quote frequency (Bollerslev and Domowitz 1993, Engle and Russell 1997). Trading activity picks

up after midnight as the Asian Pacific markets such as Tokyo, Sydney, Singapore and Hong

Kong open. The abrupt decline in arrivals between hours 3:00–4:00 GMT signals lunchtimes

in these markets. We find most quote activity between 5:00 and 16:00 GMT in the afternoon

Far Eastern trading session and during the overlap of the New York and European markets.

During this period quotes arrive at a rate of about 1 trade every 2 s for Euro/Dollar and 4 s for

Yen/Dollar on average. Activity declines after the New York market closes and before the Far

Eastern markets open again.

Price durations are the time needed to witness a given cumulative change in the price. They

are usually defined on the mid-point of the bid-ask quote process. Such definition is one of the

favorite ways used in the literature to thin the quote point process (e.g., Bauwens and Giot 2000,

2003; Engle and Russell 1997, 1998). It has several advantages. First, the bid-ask bounce can be

avoided. In a dealer’s market, the bid-ask bounce can be annoying to work with, as it is a main

feature of data but gives little information. Second, as the minimum amount of time for the price

to increase or decrease by at least c, a predefined threshold, price durations are closely linked

to the instantaneous volatility of the mid-quote price process. Therefore, we can investigate

the determinants of price volatility by adding exogenous and lagged dependent variables to an

ACD model of price durations. Thirdly, as documented in Engle and Russell (1997, 1998) for

the foreign exchange market and the New York Stock Exchanges or in Biais, Hillion and Spatt

(1995) for the Paris Bourse, the quotes process is often characterized by a short term transitory

component that gives little information about the value of the asset; while significant movement
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of the mid-point often reflects some informative events.

Define the “midprice” at time ti as Pi = (bidi + aski)/2, where bidi and aski are the current

bid and ask prices associated with transaction time ti. A threshold c characterizes price changes.

If c = 0, we would count every single movement in the midpoint as a price change. To better

capture movements in the price at which transactions occur, we will choose a positive value of

c. Figure 3 displays the histogram of the spreads. Most spreads are 0.0005 for Euro/Dollar and

0.05 for Yen/Dollar respectively, which both account for more than 40% respectively. We thus

set c = 0.0005 and 0.05 for Euro/Dollar and Yen/Dollar respectively. These choices of c yield a

sample size of 20,584 for Euro/Dollar and 15,818 for Yen/Dollar. Table 1 gives some descriptive

statistics. For Euro/Dollar, the minimum price duration is 1 s, the maximum is 12,666 s (about

3.5 hours), and the average is nearly 214 s. For Yen/Dollar, the minimum price duration is 1 s,

the maximum is 12,697 s, and the average is nearly 276 s, with the last two larger than those of

Euro/Dollar. Figure 4 presents the histogram for the price durations, whose patterns differ a bit

from those of raw quote durations. Most common price durations are 1 s, accounting for 7.3%

for Euro/Dollar and 3.6% for Yen/Dollar respectively.

Figure 5 presents the seasonalities for price durations, which are calculated in the same

manner as for quote durations. The two kinds of seasonality show similar patterns. The price

durations are on average about once every 100 s for Euro/Dollar and 160 s for Yen/Dollar

between 6:00 and 15:30 GMT. When the European market closes, price changes occur much less

frequently. They become as infrequent as roughly once every 1000s and 830s for Euro/Dollar

and Yen/Dollar respectively around 22:30 GMT. However, Yen/Dollar price changes occur most

frequently around 24:00 GMT when the Asian markets open again.

We adjust price durations by filtering out the seasonalities as follows:

Xi = Yi/g(ti),

where {Yi} is an original price duration, and g(·) is the seasonal effect on price durations. The

mean of the deseasonalized series Xi is approximately unity. The standard deviations are 1.71

and 1.63 for the “seasonally adjusted” Euro/Dollar and Yen/Dollar price durations respectively,

indicating overdispersion. The adjusted price duration process in Figure 6 looks stationary.

Prices tend to experience periods of rapid and slow movement respectively, displaying strong

price duration clustering. There are a few jumps or outliers as well. Figure 7 shows that adjusted

price durations have a decreasing pdf. A striking feature of price durations is the presence of

autocorrelation even after removing the time-of-day effects. Figure 8 reports the first 50 sample

autocorrelations of two adjusted price durations. The slow decaying autocorrelations indicate

persistent price duration clustering. Ljung-Box test statistics with 15 lags are 34,719 and 30,558

for Euro/Dollar and Yen/Dollar respectively, implying rather significant autocorrelation in price

durations.
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Following the usual practice in the literature, we focus on the adjusted series Xi rather on the

original series Yi. For out-of-sample evaluation, we divide the data into two equal halves. The

first half (10,292 observations for Euro/Dollar and 7,909 observations for Yen/Dollar) is used for

estimation and the second half is used for out-of-sample evaluation. For both Euro/Dollar and

Yen/Dollar, durations in two subsamples appear to have similar characteristics. We consider six

classes ACD models: LINACD, LOGACD, BCACD, EXPACD, TACD and MSACD, combined

with four innovation distributions—the exponential, Weibull, generalized Gamma and Burr dis-

tributions.6 This generates twenty four ACD models, all of which are estimated via MLE. The

optimization algorithm is the well-known BHHH with STEPBT for step length calculation and is

implemented via the constrained optimization code in GAUSS Window Version 5.0. For TACD

models, the MLE estimation is performed by a grid search over threshold values r and by maxi-

mizing the likelihood function given r. Parameter estimates of various ACD models are reported

in Table 2.

5 Empirical Evidence

We now use Hong and Li’s (2004) test to evaluate various ACD models for the price durations of

foreign exchanges. The performance of each model is measured by the W (p) statistic, reported

in Panels A and B of Table 3. For space, we only report W (5),W (10) and W (20).7

5.1 In-sample Performance

We first evaluate in-sample performance of ACD models. Based on parameter estimates in

Table 2, we calculate in-sample generalized residuals {Zi(θ̂)}R
t=1 in (1), where R is the size of

in-sample observations. Although some models perform better than others, W (p) in Panel A of

Table 3 overwhelmingly rejects all ACD models at any conventional significance level. In other

words, none of the ACD models adequately captures the full dynamics of price durations for

Euro/Dollar and Yen/Dollar. Our results differ from Bauwens, Giot and Veredas (2003), who find

that LOGACD models based on generalized Gamma or Burr innovations perform satisfactorily

for some stock price durations.8 Among all ACD models, the MSACD model with the Burr

distribution performs best for both Euro/Dollar and Yen/Dollar, with W (5) statistics around 30

6For TACD and MSACD, we assume that the innovations in a specific regime follows exponential, Weibull,

generalized Gamma and Burr distributions respectively, with different parameters across different regimes. The

marginal distribution of innovations is different from their conditional distribution in both TACD and MSACD

models.
7The results of W (p), for p = 1, 2, · · · , 30, are available from the authors upon request.
8One possible reason is that the evaluation tools used are different. Another possibility is that the price

durations of stocks have a different dynamics from the foreign exchange rates.
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and 20 respectively. This is in line with the results of Hujer et al. (2003) that MSACD models

have a better in-sample fit than other ACD models. With the same innovation distribution,

LINACD, LOGACD, BCACD, EXPACD and even TACD models in some cases perform rather

similarly, although the TACD models are more sophisticated. This implies that nonlinear ACD

models for ψi do not always outperform the LINACD model. In other words, a linear model

for ψi performs as well as commonly used nonlinear ACD models for ψi in capturing the full

dynamics of price durations of foreign exchanges. Among four innovation distributions, the

exponential distribution always fits poorly while the generalized Gamma distribution performs

best (the Burr innovation performs best for the MSACD model). For the ACD models with

the exponential innovations (except the MSACD model), W (5) statistics are extremely large—

over 3,000 for Euro/Dollar and over 1,000 for Yen/Dollar. W (10) and W (20) tell the same

story as W (5). The W (p) statistics imply that sophisticated specifications of the conditional

mean duration ψi do not help much in capturing the full dynamics of price durations. However,

the specification of the innovation distribution is important: either the generalized Gamma or

Burr distribution always performs better. Moreover, it is rather important to relax the i.i.d.

assumption for the innovation and consider higher order conditional moments of Xi. We find

that the relative rankings among all ACD models are generally similar for two foreign exchange

rates. The W (p) statistics for Yen/Dollar are only about half that of Euro/Dollar, indicating

that these models can better describing the price duration dynamics of Yen/Dollar. This may be

due to the fact that Euro/Dollar is more active than Yen/Dollar and its price durations display

more time-varying clustering and dispersion. As a consequence, it is more difficult to capture

the price duration dynamics for Euro/Dollar than for Yen/Dollar.

Below, we investigate possible sources for the failure of ACD models by separately examining

the uniform distribution and the i.i.d. properties of the generalized residuals of each model.

Figures 9-1 and 9-2 display the histogram of the generalized residuals in (1). Consistent with

the W (p) statistics, we find that the marginal density of the generalized residuals of MSACD

models are much closer to the uniform distribution than other ACD models. In particular, the

distribution of the generalized residuals of the RSACD model with the Burr innovations is the

closest to the uniform distribution. Given the same innovation distribution, the generalized

residuals of LINACD, LOGACD, BCACD, EXPACD and TACD models have similar marginal

distributional shapes. The density estimates of the generalized residuals of all ACD models

(except RSACD) with the exponential innovation always exhibits a U shape, with pronounced

peaks at both ends, especially at the left end. This indicates that the exponential innovation dis-

tribution underpredicts the tails of price durations, particularly extremely short price durations.

In contrast, the generalized residuals of the ACD models with Weibull, generalized Gamma and

Burr distributions usually show a similar ∩-shape density, implying that these models turn to
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overpredict ultra-long and ultra-short price durations. Both Euro/Dollar and Yen/Dollar ACD

models often tell the same story.

We now examine the performance of each model in capturing various specific dynamics of price

durations. First, we check a pattern of serial dependence of the generalized residuals {Zi(θ̂R)}
of each ACD model for two exchange rates. Panels A and B of Table 4 report the diagnostic

tests Mz(m, l) for the in-sample generalized residuals. Almost all Mz(m, l) statistics are rather

significant at the 5% level and most of them are significant at the 1% level, indicating that

there exists neglected dynamic structure in price durations for all ACD models. With the same

innovation distribution, LOGACD, BCACD and EXPACD often exhibit similar performances

and perform a little better than LINACD. Weak form ACD models perform better than strong

form ACD models. Among four innovation distributions, the exponential distribution always

delivers a larger Mz(m, l), with Mz(0, 0) around 100. This may be due to the fact that the

exponential distribution cannot capture overdispersion well in price durations. The generalized

Gamma and Burr distributions always perform better in capturing price duration dynamics.

In particular, the generalized Gamma distribution performs best in most cases. The models—

TACD models with Burr innovations, RSACD models with generalized Gamma innovations, and

RSACD models with Burr innovations— have relatively small Mz(m, l) statistics, with Mz(0, 0)

around 10. For Euro/Dollar, the TACD model with Burr innovations delivers the smallest

Mz(0, 0), which is 8.18; for Yen/Dollar, the RSACD model with the Burr innovations delivers

the lowest Mz(0, 0), which is 4.27. These results show that relaxing the i.i.d. assumption for the

innovation helps a lot in capturing the price duration dynamics.

Next, we check the independence assumption for the innovations {εi}. Table 5 reports the

Mε(m, l) statistics for estimated standardized model residuals {ε̂i = Xi/ψ̂i}. The Mε(0, 0) statis-

tics in Panels A and B of Table 4 are all larger than 15.0, indicating strong serial dependence in

{ε̂i}. This apparently contradicts the independence assumption for the innovation. The Mε(1, 0)

and Mε(2, 0) statistics are significant at the 5% level for almost all ACD models, indicating that

there exists neglected dynamic structure in both conditional mean and conditional dispersion of

price durations. For Euro/Dollar, Mε(3, 0) and Mε(4, 0) test statistics are not significant (except

very few cases) at the 5% level. For Yen/Dollar, while the Mε(3, 0) statistics are small than

Mε(1, 0) and Mε(2, 0), they are significant at the 5% level in most cases. In contrast, Mε(4, 0)

statistics are not significant at the 5% level. These results imply that the price duration may

have strong serial dependence in its first two conditional moments (i.e., conditional mean dura-

tion and conditional dispersion of durations), but it may have rather weak or nonexistent higher

order serial dependence.

Similar to Hujer et al. (2003), our analysis shows that the MSACD models, particularly the

RSACD model with Burr innovations, have the best in-sample performance. Diagnostic analysis
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shows that RSACD models better capture the stationary density of the price duration. The

weak form ACD models, such as TACD and RSACD, are better than strong form ACD models

in capturing serial dependence of the generalized residuals. Moreover, both the portmanteau

test W (p) and various diagnostic tests Mz(m, l) and Mε(m, l) suggest that the ACD models

with generalized Gamma or Burr innovations can better capture the in-sample price duration

dynamics of foreign exchanges.

5.2 Out-of-Sample Density Forecast Performance

Next, we study out-of-sample performance of ACD models. We are interested in checking whether

the ACD models that have the best in-sample performance also have the best out-of-sample

performance. Using parameters estimated in Table 2, we obtain out-of-sample generalized resid-

uals {Zt(θ̂)}T
t=R+1 for Euro/Dollar and Yen/Dollar respectively. Interestingly, the out-of-sample

performances of ACD models are similar to their in-sample ranking. The out-of-sample W (p)

statistics in Panel B of Table 3 are significant at the 1% level, indicating that none of the ACD

models can adequately forecast the full dynamics of price durations. Again, the RSACD model

with Burr innovations, which has the best in-sample fit, also has the best out-of-sample forecast,

with W (5) equal to 29.5 and 17.0 for Euro/Dollar and Yen/Dollar respectively. With the same

innovation distribution, LINACD, LOGACD, BCACD, EXPACD and TACD models perform

rather similarly. This indicates that sophisticated nonlinear modeling for the conditional mean

ψi helps little in improving out-of-sample density forecasts of price durations. However, the in-

novation distribution specification is important: the exponential distribution often has the worst

performance, with overwhelming large W (p) statistics. The Weibull distribution helps a lot in

improving density forecasts: the W (p) statistics decrease from over 1000 for the exponential

distribution to well below 500, given the same conditional mean specification ψi. Generalized

Gamma and Burr innovations often have the best performances. This is similar to the results

of Dufour and Engle (2000) that the choice of the innovation distribution becomes critical when

forecasting the trade duration density. We also find that it is important to relax the i.i.d. as-

sumption for innovations. Taking into account higher order conditional dependence via regime

shifts and threshold principles helps a lot in forecasting the full dynamics of price durations.

To gauge possible sources of model misspecification, we next separately examine the uni-

form distribution and i.i.d. properties of out-of-sample generalized residuals. Figures 10-1 and

10-2 display histograms of out-of-sample generalized residuals of Euro/Dollar and Yen/Dollar.

Consistent with the W (p) statistics, we find that the marginal densities of out-of-sample gen-

eralized residuals of RSACD models are much closer to the uniform distribution than those of

other models. In particular, the density of the out-of-sample generalized residuals of the RSACD

model with Burr innovations is the closet to the uniform distribution. Given the same innova-
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tion distribution, the density of the out-of-sample generalized residuals of LINACD, LOGACD,

BCACD, EXPACD and TACD models perform rather similarly. Figure 10 shows that the density

estimates of the out-of-sample generalized residuals of all ACD models (except RSACD) with

exponential innovations exhibit a U shape, with pronounced peaks at two ends, especially at

the left end. This pattern is similar to the in-sample pattern. However, this situation has been

greatly improved in the RSACD model with exponential innovations. The ACD models with

Weibull, generalized Gamma and Burr innovations all have an ∩-shape density for their out-of-

sample generalized residuals: more realizations than predicted fall into the left and right ends.

In most cases, the generalized Gamma distribution slightly outperforms the Burr distribution,

which in turn outperforms the Weibull distribution. Although the RSACD model with Burr

innovations is the closet to the uniform distribution, it still slightly underpredicts the very short

durations and overpredicts the short durations. This implies that all ACD models cannot fully

account for the tail of price durations. However, the RSACD models, which allow for different

regimes and higher order serial dependence, can better capture the fat tail of price durations.

While the RSACD model with Burr innovations characterizes the marginal density of the out-

of-sample generalized residuals well, it still has difficulty in capturing various aspects of price

duration dynamics, as can be seen from the Mz(m, l) and Mε(m, l) statistics in Tables 4 and 5.

Panels C and D of Table 4 reports Mz(m, l) statistics for out-of-sample generalized residuals. All

ACD models fail to satisfactorily capture serial dependence in the conditional mean, variance,

skewness and kurtosis of their out-of-sample generalized residuals, with Mz(m, l) statistics signif-

icant at any conventional significance level. In general, the weak form ACD models (TACD and

RSACD) with generalized Gamma and Burr innovations perform better, giving smaller Mz(0, 0)

statistics. There is a little difference from the in-sample case: the TACD (rather than the

MSACD ) model with Burr innovations has the smallest Mz(0, 0) statistic for both Euro/Dollar

and Yen/Dollar. For Euro/Dollar, the RSACD model with Burr innovations has a larger Mz(0, 0)

than many other models (e.g., RSACD and BCACD models with generalized Gamma innova-

tions). This implies that relaxing the i.i.d. assumption for the innovation, allowing regime shifts,

and using generalized Gamma or Burr innovations can significantly improve forecasting the full

dynamics of price durations of foreign exchanges. The Mε(m, l) tests for the standardized resid-

uals are reported in Panels C and D of Table 5. The empirical results are similar to that of the

in-sample case: for both Euro/Dollar and Yen/Dollar, Mε(0, 0),Mε(1, 0) and Mε(2, 0) is rather

large, while Mε(3, 0) and Mε(4, 0) are relatively small.

In summary, our analysis shows that none of commonly used ACD models can adequately

capture the full dynamics of price durations of foreign exchanges, either in-sample or out-of-

sample. This differs from Bauwens et al. (2003), who use different evaluation methods and find

that LINACD and LOGACD models with generalized Gamma and Burr innovations perform
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satisfactorily for stock price durations. However, some ACD models outperform others. The

RSACD models with Burr innovations have not only the best in-sample fit but also the best

out-of-sample performance, which is consistent with the empirical results of Hujer et al. (2003)

for stock transaction durations. Generally speaking, each ACD model has similar in-sample and

out-of-sample performances. In particular, the ACD models that have best in-sample fit usually

have best out-of-sample density forecasts. It seems that sophisticated nonlinear specifications

for conditional expected durations do not help much in capturing the full dynamics of price du-

rations. However, the specification of the innovation distribution is important: the exponential

distribution always fits poorly while generalized Gamma and Burr distributions perform much

better. Moreover, relaxing the i.i.d. assumption for the innovation, allowing higher order de-

pendence in price durations, and taking into account possible regime shifts can help a lot in

improving the performance of ACD models. Nevertheless, there seems to be a long way to find

an adequate ACD model for the full dynamics of price durations of foreign exchanges, which

remains to be an important research topic in the literature.

6 Conclusion

In high-frequency financial econometrics, price duration dynamics is important due to its close

links to market microstructure theory, options pricing, and risk management. Applying Hong and

Li’s (2004) nonparametric portmanteau test for time series conditional distributional models, we

provide a relatively comprehensive empirical study on in-sample and out-of-sample performances

of a wide variety of ACD models in capturing the full dynamics of price durations of two exchange

rates—Euro/Dollar and Yen/Dollar.

We find that none of the ACD models can adequately capture the price duration dynamics

of Euro/Dollar and Yen/Dollar, either in-sample or out-sample. However, some ACD models,

particularly the Markov switching ACD model with Burr innovations, have not only the best

in-sample fit, but also the best out-of-sample performance. We find that sophisticated models

for the conditional mean duration do not help much in capturing the full dynamics of price

durations of foreign exchanges, but the specification of the innovation distribution is important:

generalized Gamma or Burr distribution performs much better than Weibull and exponential

distributions. The latter often performs poorest. Moreover, the conditional mean duration alone

cannot fully capture the dynamics of price durations of foreign exchanges. It is important to

relax the i.i.d assumption for the innovation, to model higher order conditional moments, and

to allow possible regime shifts in price durations. Our findings are similar for both Euro/Dollar

and Yen/Dollar and for both in-sample and out-of-sample.
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[32] Hujer, R., Kokot, S.,and Vuletić, S., 2003. Comparison of MSACD models, Johann Wolfgang

Goethe University, Frankfurt am Main.
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Figure 1.  Histograms of raw quote durations 
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Figure 2.  Expected quote durations conditional on time of day                          
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Figure 3.  Histograms of observed spreads 
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Figure 4.  Histograms of raw price durations 
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Figure 5.  Expected price durations conditional on time of day 
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                          Figure 6.  Seasonally adjusted price duration 
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Figure 7.  Histogram of seasonally adjusted price duration 
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Figure 8.  Sample autocorrelations of seasonally adjusted price duration 
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Figure 9-1. Histogram of in-sample generalized residuals of Euro/Dollar  
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Note: LACD, LOGACD, BCACD, EXACD, TACD and RSACD represent linear ACD, log ACD, 
Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching models 
respectively. “E, W,G”and “B”denote the ACD models based on standard exponential, Weibull, 
Generalized Gamma and Burr innovation respectively. The whole sample are seasonally adjusted 
price durations from July, 1, 2000 to June 30, 2001 on Wednesdays, with total 20,584 and 15,818 
observations for Euro/Dollar and Yen/Dollar respectively. The first half of the samples are used for 
estimation and the second half are used for out-of-sample forecasting.  

 



Figure 9-2. Histogram of in-sample generalized residuals of Yen/Dollar 
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Note: LACD, LOGACD, BCACD, EXACD, TACD and RSACD represent linear ACD, log ACD, 
Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching models 
respectively. “E, W,G”and “B”denote the ACD models based on standard exponential, Weibull, 
Generalized Gamma and Burr innovation respectively. The whole sample are seasonally adjusted 
price durations from July, 1, 2000 to June 30, 2001 on Wednesdays, with total 20,584 and 15,818 
observations for Euro/Dollar and Yen/Dollar respectively. The first half of the samples are used for 
estimation and the second half are used for out-of-sample forecasting. 

 



 
Figure 10-1: Histogram of out-of-sample forecasted generalized residuals of Euro/Dollar 
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Note: LACD, LOGACD, BCACD, EXACD, TACD and RSACD represent linear ACD, log ACD, 
Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching models 
respectively. “E, W,G”and “B”denote the ACD models based on standard exponential, Weibull, 
Generalized Gamma and Burr innovation respectively. The whole sample are seasonally adjusted 
price durations from July, 1, 2000 to June 30, 2001 on Wednesdays, with total 20,584 and 15,818 
observations for Euro/Dollar and Yen/Dollar respectively. The first half of the samples are used for 
estimation and the second half are used for out-of-sample forecasting. 

 



Figure 10-2: Histogram of out-of-sample forecasted generalized residuals of Yen/Dollar  
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Note: LACD, LOGACD, BCACD, EXACD, TACD and RSACD represent linear ACD, log ACD, 
Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching models 
respectively. “E, W,G”and “B”denote the ACD models based on standard exponential, Weibull, 
Generalized Gamma and Burr innovation respectively. The whole sample are seasonally adjusted 
price durations from July, 1, 2000 to June 30, 2001 on Wednesdays, with total 20,584 and 15,818 
observations for Euro/Dollar and Yen/Dollar respectively. The first half of the samples are used for 
estimation and the second half are used for out-of-sample forecasting. 



Table 1: Summary statistics for price durations of Euro/Dollar and Yen/Dollar

Euro/Dollar Yen/Dollar

Raw Duration Deseasonalized Duration Raw Duration Deseasonalized Duration

the whole sample

Sample size 20584 20584 15818 15818

Mean 213.89 1 276.31 1

Std. Dev. 500.64 1.7068 570.63 1.6293

Minimum 1 0.0009 1 0.0012

Median 57 0.3427 99 0.4166

Maximum 12666 32.363 12697 26.354

First half sample

Sample size 10292 10292 7909 7909

Mean 217.69 1.02 331.51 1.20

Std. Dev. 542.92 1.77 896.96 1.9337

Minimum 1 0.001 1 0.001

Median 48 0.3094 115 0.4966

Maximum 12666 21.862 12697 26.354

Second half sample

Sample size 10292 10292 7909 7909

Mean 210.1 0.9816 221.11 0.8013

Std. Dev. 454.43 1.6459 399.28 1.2212

Minimum 1 0.0009 1 0.0014

Median 64 0.3725 87 0.3592

Maximum 9654 32.363 9191 19.403

Raw price durations are measured in seconds by the time interval between two bid-ask quotes during

which a cumulative change in the mid-price of at least 0.0005 for Euro/Dollar and 0.05 for Yen/Dollar

is observed. The quotes obtained from Olsen & Associates are intra-day Euro/Dollar and Yen/Dolla

exchange rates from July 1, 2000 to June 30, 2001 on Wednesdays. Deseasonalized price durations are

produced from raw price durations by filtering out the time-of-day effects.
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Table 2: Parameter estimates of ACD models for Euro/Dollar and Yen/Dollar price durations

This table reports maximum likelihood estimates of linear, logarithmic, Box-Cox, Exponential, Threshold,

and Markov Switching models for Euro/Dollar and Yen/Dollar exchange rate price durations. For each

model, four commonly used innovation distributions—exponential, Weibull, generalized Gamma and

Burr distributions denoted by “E, W, G” and “B” respectively are considered. The whole sample are

deseasonalized price durations from July, 1, 2000 to June 30, 2001 on Wednesdays, with total 20,584

and 15,818 observations for Euro/Dollar and Yen/Dollar respectively. The first half of the samples are

used for estimation. The numbers in the parentheses are standard errors for the estimates. The density

function for innovation distribution are as follows:

f(εi) =



exp(−εi), if εi ∼ E,

γ
[
Γ

(
1 + 1

γ

)]γ

εγ−1
i exp

{
−
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Γ

(
1 + 1

γ

)
εi

]γ}
, γ > 0, if εi ∼W (γ),

γεγλ−1
i

Γ(λ)

[
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]γλ

exp
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−

[
εiΓ(λ+1/γ)

Γ(λ)
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, λ, γ > 0, if εi ∼ G(γ, λ),

γ
c

(
εi

c

)γ−1 [
1 + λ

(
εi

c

)γ]−(1+λ−1)
, c = (λ)1+γ−1

Γ(1+λ−1)
Γ(1+γ−1)Γ(λ−1−γ−1) , γ > λ > 0, if εi ∼ B(γ, λ).

A. Linear ACD model (LINACD)

Euro/Dollar Yen/Dollar

Parameter E W G B E W G B

ω 0.0418 0.0562 0.088 0.0653 0.0521 0.0616 0.0792 0.0668

(0.0044) (0.0072) (0.0102) (0.008) (0.0058) (0.0098) (0.0129) (0.0109)

α 0.1699 0.2551 0.4096 0.3482 0.1925 0.2466 0.3167 0.2767

(0.0091) (0.0174) (0.0281) (0.0254) (0.0098) (0.0177) (0.026) (0.0221)

β 0.7997 0.7139 0.6059 0.656 0.7767 0.7244 0.6634 0.6997

(0.0115) (0.019) (0.0227) (0.0207) (0.0116) (0.0202) (0.0266) (0.0233)

γ 0.6239 0.2489 0.6968 0.6799 0.471 0.7095

(0.0047) (0.0186) (0.01) (0.0059) (0.0261) (0.0105)

λ 5.2979 0.1963 1.8703 0.0733

(0.7491) (0.0247) (0.1795) (0.0218)

Log-likelihood -8943.24 -6452.94 -6292.28 -6407.41 -8310.07 -7116.01 -7087.59 -7109.39

The specified linear ACD model is


Xi = ψiεi,

ψi = ω + αXi−1 + βψi−1,

εi ∼ i.i.d. E or W (γ) or G(γ, λ) or B(γ, λ).
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B. Log ACD model (LOGACD)
Euro/Dollar Yen/Dollar

Parameter E W G B E W G B

ω 0.1334 0.1712 0.2652 0.2379 0.1294 0.1652 0.2244 0.1989

(0.0057) (0.0099) (0.0159) (0.0158) (0.0067) (0.0117) (0.0166) (0.0155)

α 0.115 0.1512 0.1983 0.1876 0.1105 0.1436 0.184 0.1679

(0.0046) (0.0079) (0.0093) (0.0095) (0.0052) (0.0091) (0.0112) (0.011)

β 0.7749 0.7266 0.6596 0.6823 0.7812 0.7215 0.6485 0.6795

(0.0118) (0.0184) (0.0201) (0.0196) (0.0137) (0.0238) (0.0275) (0.0268)

γ 0.6208 0.2207 0.706 0.6748 0.4138 0.722

(0.0047) (0.0181) (0.0104) (0.0059) (0.0245) (0.0111)

λ 6.6539 0.23 2.3356 0.1171

(1.0456) (0.026) (0.2456) (0.024)

Log-likelihood -9050.77 -6480.52 -6289.94 -6422.23 -8401.26 -7145.65 -7098.11 -7130.44

The specified log ACD model is


Xi = ψiεi,

lnψi = ω + α lnXi−1 + β lnψi−1,

εi ∼ i.i.d. E or W (γ) or G(γ, λ) or B(γ, λ).

C: Box-Cox ACD model (BCACD)
Euro/Dollar Yen/Dollar

Parameter E W G B E W G B

ω -0.2434 -0.4107 -0.66 -0.5636 -0.2611 -0.3602 -0.4891 -0.4222

(0.0167) (0.0388) (0.0689) (0.0557) (0.0169) (0.0343) (0.0541) (0.0446)

α 0.2999 0.509 0.8598 0.7251 0.3277 0.4536 0.6284 0.5372

(0.0223) (0.049) (0.0831) (0.07) (0.0228) (0.0446) (0.0687) (0.0575)

β 0.9238 0.8967 0.8659 0.8857 0.9198 0.9008 0.8764 0.8909

(0.0067) (0.0109) (0.0125) (0.0113) (0.007) (0.012) (0.0148) (0.0133)

δ 0.5569 0.4402 0.3378 0.3768 0.5604 0.491 0.4224 0.4572

(0.0283) (0.0358) (0.0325) (0.0324) (0.031) (0.0406) (0.0399) (0.0402)

γ 0.6262 0.2423 0.7045 0.6828 0.4563 0.7192

(0.0047) (0.0185) (0.0102) (0.006) (0.0258) (0.0108)

λ 5.6292 0.2089 1.9959 0.0894

(0.8158) (0.0249) (0.1967) (0.0224)

Log-likelihood -8859.20 -6405.91 -6236.09 -6354.23 -8241.34 -7073.12 -7039.38 -7063.47

The specified Box-Cox ACD model is


Xi = ψiεi,

lnψi = ω + αεδ
i−1 + β lnψi−1,

εi ∼ i.i.d. E or W (γ) or G(γ, λ) or B(γ, λ).
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D: Exponential ACD model (EXPACD)
Euro/Dollar Yen/Dollar

Parameter E W G B E W G B

ω -0.0806 -0.0876 -0.0531 -0.0681 -0.0889 -0.0965 -0.0836 -0.0964

(0.0052) (0.0087) (0.0118) (0.0107) (0.0062) (0.0097) (0.0227) (0.0103)

α 0.2061 0.292 0.4138 0.3752 0.2208 0.2773 0.3461 0.3088

(0.0107) (0.0068) (0.0204) (0.0207) (0.01) (0.0167) (0.0234) (0.0196)

β 0.9149 0.884 0.8444 0.8674 0.917 0.8956 0.8744 0.8866

(0.0074) (0.0092) (0.0135) (0.0126) (0.0072) (0.0122) (0.014) (0.0133)

δ -0.1309 -0.2154 -0.3363 -0.2972 -0.1321 -0.183 -0.2438 -0.2114

(0.0112) (0.0024) (0.0228) (0.0225) (0.0109) (0.0183) (0.0234) (0.0211)

γ 0.6261 0.2463 0.7003 0.6829 0.4462 0.718

(0.0047) (0.0181) (0.01) (0.006) (0.0183) (0.0106)

λ 5.4455 0.201 2.0764 0.0861

(0.7586) (0.0241) (0.1497) (0.0219)

Log-likelihood -8867.44 -6413.34 -6248.41 -6366.08 -8237.14 -7070.80 -7038.39 -7061.67

The specified exponential ACD model is


Xi = ψiεi,

lnψi = ω + αεi−1 + δ |εi−1 − 1|+ β lnψi−1,

εi ∼ i.i.d. E or W (γ) or G(γ, λ) or B(γ, λ).

32



E: Threshold ACD model (TACD)
Euro/Dollar Yen/Dollar

Parameter E W G B E W G B

ω1 0.0184 0.0364 0.0478 -0.307 0.0171 0.0129 0.0187 -0.0297

(0.0039) (0.008) (0.009) (0.1024) (0.0037) (0.009) (0.0106) (0.0448)

α1 0.2783 0.2134 0.6391 -0.0181 0.2786 0.3846 0.4425 0.0375

(0.0207) (0.0877) (0.0692) (0.0253) (0.0191) (0.0951) (0.1048) (0.0138)

β1 0.8069 0.7376 0.6438 0.8893 0.794 0.7678 0.739 0.9158

(0.0128) (0.021) (0.023) (0.0234) (0.0099) (0.0179) (0.0216) (0.0165)

ω2 0.4013 0.245 0.4562 0.1601 0.6003 0.2711 0.2974 0.1311

(0.0414) (0.0272) (0.0582) (0.0124) (0.0566) (0.0334) (0.0375) (0.0143)

α2 0.0986 0.1288 0.1251 0.2227 0.0771 0.1387 0.1527 0.21

(0.0105) (0.0139) (0.0206) (0.0154) (0.0116) (0.0151) (0.0177) (0.0189)

β2 0.6268 0.728 0.6964 0.6725 0.6059 0.7008 0.683 0.6504

(0.0341) (0.0276) (0.0412) (0.0258) (0.04) (0.0307) (0.0338) (0.0339)

γ1 0.5734 0.2684 0.6971 0.5989 0.4867 0.7564

(0.006) (0.019) (0.0092) (0.0077) (0.0255) (0.0108)

γ2 0.7001 0.7785

(0.0076) (0.0091)

λ1 4.3446 0.3559 1.4781 0.4269

(0.5833) (0.0235) (0.1352) (0.0278)

λ2 5.3646 0.0857 2.1655 0.0102

(0.7043) (0.0217) (0.1981) (0.0187)

Log-likelihood -8804.91 -6304.44 -6195.43 -6292.29 -8186.21 -6950.79 -6948.84 -6944.52

The 2-regime threshold ACD model with standard exponential error is

Xi = ψiεi, ψi =

{
ω1 + α1Xi−1 + β1ψi−1, εi ∼ E if Xi−1 ≤ 1.217 (1.478)

ω2 + α2Xi−1 + β2ψi−1, εi ∼ E if Xi−1 > 1.217 (1.478);
with Weibull error is

Xi = ψiεi, ψi =

{
ω1 + α1Xi−1 + β1ψi−1, εi ∼W (γ1) if Xi−1 ≤ 0.309 (0.377)

ω2 + α2Xi−1 + β2ψi−1, εi ∼W (γ2) if Xi−1 > 0.309 (0.377);
with generalized gamma error is

Xi = ψiεi, ψi =

{
ω1 + α1Xi−1 + β1ψi−1, εi ∼ G(γ1, λ1) if Xi−1 ≤ 0.755 (0.377)

ω2 + α2Xi−1 + β2ψi−1, εi ∼ G(γ1, λ2) if Xi−1 > 0.755 (0.377);
with Burr error is

Xi = ψiεi, lnψi =

{
ω1 + α1 lnXi−1 + β1 lnψi−1, εi ∼ B(γ1, λ1) if Xi−1 ≤ 0.074 (0.278)

ω2 + α2 lnXi−1 + β2 lnψi−1, εi ∼ B(γ1, λ2) if Xi−1 > 0.074 (0.278).
Estimation is performed by a grid search over threshold values r and by maximizing the likelihood function

conditional on given r. The first threshold values are for Euro/Dollar and threshold values in parentheses

are for Yen/Dollar.
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F: Regime-switching ACD model (RSACD)
Euro/Dollar Yen/Dollar

Parameter E W G B E W G B

p11 0.6116 0.5752 0.6558 0.714 0.4443 0.614 0.6123 0.6867

(0.0129) (0.0244) (0.0403) (0.012) (0.0161) (0.0333) (0.0409) (0.0165)

p22 0.7514 0.86 0.3544 0.7552 0.5827 0.9008 0.3528 0.8493

(0.0096) (0.0086) (0.038) (0.01) (0.0285) (0.0084) (0.0285) (0.0095)

ω1 -2.4913 -3.1667 0.2437 0.1061 -1.1389 -2.5765 0.2345 0.0821

(0.0594) (0.0876) (0.0347) (0.0502) (0.0828) (0.1175) (0.0315) (0.0637)

α1 0.0348 -0.0367 0.0165 0.0176 0.4859 0.0881 -0.0004 0.0119

(0.0176) (0.0212) (0.0119) (0.0108) (0.0296) (0.0342) (0.0099) (0.0135)

β1 0.5091 0.2541 0.9164 0.909 0.5476 0.0346 0.9702 0.9733

(0.0623) (0.0632) (0.0234) (0.0253) (0.0812) (0.0891) (0.0221) (0.0333)

ω2 0.5118 0.3491 -0.297 0.0596 0.5344 0.3656 -0.2973 -0.1517

(0.0123) (0.0138) (0.0726) (0.0241) (0.021) (0.0192) (0.0586) (0.0327)

α2 0.0498 0.0792 0.663 0.0601 0.0623 0.0911 0.6979 0.0765

(0.0072) (0.0085) (0.034) (0.0076) (0.0095) (0.0095) (0.0257) (0.0078)

β2 0.5343 0.5789 0.2824 0.9226 0.8168 0.4611 0.0796 0.8949

(0.0334) (0.0362) (0.0677) (0.0197) (0.0294) (0.048) (0.0654) (0.0172)

γ1 1.1374 0.4534 1.3211 1.0298 0.675 1.186

(0.036) (0.0306) (0.0276) (0.0443) (0.0351) (0.0308)

γ2 0.7616 0.8076

(0.0105) (0.0126)

λ1 1.9161 1.2917 1.2412 0.9874

(0.2078) (0.028) (0.1212) (0.0561)

λ2 2.864 0.4644 1.4539 0.3593

(0.4258) (0.0393) (0.1248) (0.0365)

Log-likelihood -6181.97 -6027.42 -6123.99 -5797.49 -7001.39 -6935.41 -6864.71 -6761.33

The 2-regime switching ACD model is


Xi = ψiεi,

lnψ(Si)
i = ω(Si) + α(Si) lnXi−1 + β(Si) lnψi−1, Si = 1, 2

ε
(Si)
i = Xi/ψ

(Si)
i ∼ E or W (γst

) or G(γ1, λst
) or B(γ1, λst

),
with constant transition probability p11 = P (Si = 1|Si−1 = 1), p22 = P (Si = 2|Si−1 = 2).
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Table 3: Nonparametric portmanteau density evaluation statistics for in-sample and

out-of-sample performance of ACD models

Panel A. In-sample performance

Euro/Dollar Yen/Dollar

Model W(5) W(10) W(20) W(5) W(10) W(20)

LINACD-E 3813.51 5081.27 6923.74 1495.65 1960.61 2663.42

LINACD-W 278.63 372.83 503.40 86.24 103.31 130.88

LINACD-G 147.68 191.76 251.17 80.78 96.29 121.90

LINACD-B 224.73 299.53 402.06 86.20 103.52 131.20

LOGACD-E 3933.91 5309.79 7322.43 1555.12 2051.11 2812.81

LOGACD-W 319.33 425.80 577.57 92.81 109.19 139.41

LOGACD-G 155.43 198.33 258.70 75.24 87.45 109.84

LOGACD-B 252.51 333.36 449.23 87.97 103.09 130.75

BCACD-E 3638.72 5037.01 6930.56 1428.47 1883.91 2573.63

BCACD-W 287.89 395.77 547.85 81.79 97.66 124.98

BCACD-G 145.29 187.74 245.00 73.95 88.11 113.30

BCACD-B 234.31 318.05 440.41 80.69 96.52 123.89

EXPACD-E 3734.41 5004.18 6849.53 1432.69 1889.77 2581.31

EXPACD-W 287.13 385.01 522.15 84.36 100.75 129.74

EXPACD-G 157.18 203.58 267.08 78.90 94.26 121.42

EXPACD-B 235.82 314.37 423.49 84.47 100.98 130.09

TACD-E 3643.36 4860.84 6645.82 1259.82 1744.29 2427.03

TACD-W 198.24 264.49 356.30 59.35 72.65 95.88

TACD-G 136.93 177.77 233.75 57.79 70.61 93.56

TACD-B 202.55 271.68 368.56 62.63 80.92 107.41

RSACD-E 88.07 113.73 150.30 84.27 112.54 156.54

RSACD-W 63.78 82.47 108.33 26.14 33.27 42.13

RSACD-G 113.60 149.06 196.24 35.38 44.09 58.92

RSACD-B 29.47 36.34 44.78 16.99 20.84 27.15

The table reports the evaluation statistics W (p) for the in-sample density forecasting performance of

linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr error distributions respec-

tively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation. The W (p) statistics are asymptotically one sided

N(0, 1) distribution and upper-tailed critical values should be used, which are 1.65 and 2.33 at the 5%

and 1% levels, respectively.
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Panel B. Out-of-sample performance

Euro/Dollar Yen/Dollar

Model W(5) W(10) W(20) W(5) W(10) W(20)

LINACD-E 3049.10 4039.90 5567.52 1447.52 1901.04 2539.42

LINACD-W 235.98 312.96 425.11 96.72 117.18 150.61

LINACD-G 169.83 221.57 298.76 83.75 99.38 125.43

LINACD-B 209.22 275.83 375.10 90.71 108.60 138.25

LOGACD-E 3145.42 4211.61 5851.44 1708.47 2276.17 3089.67

LOGACD-W 255.00 332.78 451.05 133.64 168.80 224.70

LOGACD-G 165.90 206.67 273.05 97.95 120.68 157.02

LOGACD-B 212.47 271.68 365.42 112.32 140.37 184.64

BCACD-E 2998.12 3984.67 5509.08 1433.75 1895.51 2555.39

BCACD-W 231.68 305.99 416.97 102.11 126.22 164.81

BCACD-G 163.13 210.12 281.21 84.58 103.32 132.53

BCACD-B 201.23 262.46 355.50 92.46 113.38 146.07

EXPACD-E 3025.14 4021.55 5556.89 1451.46 1918.08 2586.03

EXPACD-W 239.88 316.55 431.20 105.70 130.70 171.59

EXPACD-G 175.90 227.04 305.39 90.55 110.11 142.17

EXPACD-B 212.56 277.35 375.33 97.06 118.44 153.82

TACD-E 2995.36 3973.34 5485.29 1294.17 1775.72 2499.07

TACD-W 176.27 229.52 312.14 102.59 135.81 185.91

TACD-G 157.86 204.62 274.33 78.05 99.67 133.66

TACD-B 183.80 241.43 327.71 83.63 107.79 145.58

RSACD-E 121.13 156.22 207.69 106.29 144.92 201.26

RSACD-W 81.16 103.70 136.47 146.46 200.07 276.79

RSACD-G 132.12 175.02 239.88 52.08 67.85 91.41

RSACD-B 33.47 39.68 49.50 34.58 42.49 54.61

The table reports the evaluation statistics W (p) for the out-of-sample density forecasting performance of

linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr error distributions respec-

tively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. The

W (p) statistics are asymptotically one sided N(0, 1) distribution and upper-tailed critical values should

be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Table 4: Separate Diagnostic Statistics for in-sample and out-of-sample generalized residuals of

ACD models

Panel A. In-sample generalized residuals of Euro/Dollar

Model Mz(0, 0) Mz(1, 0) Mz(2, 0) Mz(3, 0) Mz(4, 0) Mz(1, 1) Mz(1, 2) Mz(2, 1) Mz(2, 2) Mz(3, 3) Mz(4, 4)

LINACD-E 112.20 111.90 90.56 103.50 85.35 111.80 39.30 90.50 43.43 96.57 41.10

LINACD-W 70.50 70.18 35.69 34.96 23.74 70.04 16.43 35.71 12.57 24.65 12.92

LINACD-G 29.73 29.42 34.47 9.85 25.93 29.30 16.77 34.52 11.12 5.59 13.75

LINACD-B 40.14 39.85 37.62 18.59 27.49 39.74 17.69 37.66 12.47 12.47 14.51

LOGACD-E 105.40 105.00 84.87 88.63 76.11 105.00 1.59 84.74 52.30 76.74 47.66

LOGACD-W 55.25 54.93 23.12 22.08 13.93 54.81 24.08 23.04 26.60 15.42 27.69

LOGACD-G 19.96 19.70 23.21 10.56 18.13 19.57 30.98 23.14 25.60 6.97 28.01

LOGACD-B 26.23 25.98 24.93 12.98 17.63 25.86 28.96 24.86 26.67 8.78 28.83

BCACD-E 92.35 92.02 90.25 82.31 84.21 91.94 22.37 90.19 43.28 75.31 41.16

BCACD-W 49.68 49.36 34.40 21.81 23.22 49.28 5.73 34.40 15.81 14.81 16.32

BCACD-G 16.80 16.54 32.70 9.52 25.94 16.49 5.51 32.70 15.86 6.42 18.13

BCACD-B 23.63 23.36 35.85 13.44 26.83 23.32 5.17 35.86 16.40 8.97 18.32

EXPACD-E 92.18 91.86 88.96 82.88 82.66 91.83 17.83 88.87 45.49 80.34 43.35

EXPACD-W 54.79 54.48 32.20 23.73 21.02 54.44 5.89 32.18 17.54 19.48 18.10

EXPACD-G 21.65 21.36 30.66 7.11 23.60 21.34 6.21 30.65 16.23 4.30 18.92

EXPACD-B 27.95 27.67 34.01 12.39 24.51 27.66 5.91 34.00 17.54 9.19 19.89

TACD-E 96.15 95.81 91.54 86.40 85.73 95.73 27.35 91.48 43.34 82.16 42.44

TACD-W 22.99 22.84 6.13 9.66 22.75 22.81 8.22 6.05 19.72 7.80 20.07

TACD-G 13.79 13.62 6.31 6.40 2.40 13.60 5.39 6.24 24.89 3.38 25.99

TACD-B 8.18 8.07 7.97 6.25 1.98 8.02 19.77 7.94 14.80 2.67 16.20

RSACD-E 44.25 44.23 3.27 33.24 4.95 44.14 45.14 3.18 20.04 33.82 20.18

RSACD-W 47.48 47.42 9.41 32.60 7.51 47.29 56.41 9.30 19.47 32.27 19.31

RSACD-G 9.88 9.73 22.73 6.50 30.15 9.62 28.13 22.72 18.59 4.89 21.15

RSACD-B 13.60 13.57 1.53 8.83 3.73 13.39 43.86 1.41 27.54 8.44 29.97

This table reports Mz(m, l) diagnostic test statistics for the serial dependence of generalized residuals {Zi}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mz(0, 0)

represents statistics on i.i.d. test. Mz(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mz(l, 1),Mz(2, 2),Mz(3, 3),Mz(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mz(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Panel B. In-sample generalized residuals of Yen/Dollar

Model Mz(0, 0) Mz(1, 0) Mz(2, 0) Mz(3, 0) Mz(4, 0) Mz(1, 1) Mz(1, 2) Mz(2, 1) Mz(2, 2) Mz(3, 3) Mz(4, 4)

LINACD-E 78.69 78.43 93.45 84.42 94.01 78.27 38.52 93.41 37.04 77.48 40.84

LINACD-W 71.10 70.77 72.49 52.68 62.99 70.60 16.43 72.48 12.74 36.05 12.15

LINACD-G 49.45 49.09 78.25 33.69 69.50 48.92 17.19 78.25 11.49 21.71 11.62

LINACD-B 60.10 59.76 75.31 43.81 66.29 59.60 16.83 75.30 12.40 29.68 12.20

LOGACD-E 89.10 88.83 88.26 89.07 83.92 88.76 7.35 88.12 57.36 79.72 61.35

LOGACD-W 63.84 63.49 62.21 38.35 50.83 63.38 10.80 62.06 36.59 26.64 30.74

LOGACD-G 36.67 36.28 71.33 17.23 62.05 36.18 12.14 71.18 34.11 10.37 29.25

LOGACD-B 45.71 45.34 68.08 24.70 57.60 45.24 11.74 67.93 35.72 16.18 30.55

BCACD-E 62.85 62.56 94.59 67.74 94.19 62.45 22.27 94.54 39.96 61.73 43.24

BCACD-W 52.64 52.29 76.53 35.84 64.92 52.19 4.68 76.49 17.76 24.00 14.98

BCACD-G 32.93 32.54 82.95 19.89 72.38 32.46 2.80 82.90 17.94 12.57 15.58

BCACD-B 40.99 40.63 80.27 27.06 69.21 40.54 3.81 80.23 18.18 17.89 15.64

EXPACD-E 62.06 61.77 94.34 67.04 94.31 61.71 17.59 94.28 43.15 65.28 46.77

EXPACD-W 53.48 53.13 77.36 36.63 65.78 53.07 4.23 77.29 20.41 28.28 17.19

EXPACD-G 36.97 36.58 83.77 22.93 73.04 36.53 4.05 83.70 19.57 17.44 17.17

EXPACD-B 42.99 42.63 81.14 28.62 69.96 42.58 3.99 81.07 20.41 22.30 17.61

TACD-E 65.46 65.20 92.91 72.84 91.34 65.11 22.64 92.87 41.12 70.19 45.50

TACD-W 22.28 22.24 1.93 15.15 2.00 22.21 3.38 1.91 10.90 12.43 9.20

TACD-G 24.45 24.36 6.43 13.90 0.39 24.32 3.19 6.42 12.39 11.46 10.13

TACD-B 10.36 10.23 30.49 6.93 12.47 10.23 1.57 30.47 12.57 6.81 10.83

RSACD-E 18.06 17.95 13.62 9.41 14.32 17.88 8.32 13.63 11.19 6.35 10.24

RSACD-W 40.37 40.34 12.00 32.88 9.09 40.27 28.28 11.92 14.64 30.20 13.00

RSACD-G 15.61 15.55 7.59 9.04 10.91 15.51 3.94 7.56 16.52 6.63 18.62

RSACD-B 4.27 4.23 10.74 4.29 9.57 4.15 21.67 10.70 10.63 5.38 11.41

This table reports Mz(m, l) diagnostic test statistics for the serial dependence of generalized residuals {Zi}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mz(0, 0)

represents statistics on i.i.d. test. Mz(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mz(l, 1),Mz(2, 2),Mz(3, 3),Mz(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mz(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Panel C. Out-of-sample generalized residuals of Euro/Dollar

Model M(0,0) M(1,0) M(2,0) M(3,0) M(4,0) M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

LINACD-E 47.59 47.19 123.30 55.82 119.30 47.09 34.36 123.20 56.38 56.08 55.38

LINACD-W 38.87 38.48 93.48 25.56 75.59 38.38 22.02 93.47 10.92 21.73 13.62

LINACD-G 20.60 20.21 91.52 14.21 78.06 20.11 24.31 91.52 6.90 13.89 12.75

LINACD-B 23.28 22.92 94.11 18.01 78.68 22.83 23.49 94.10 9.19 17.00 13.97

LOGACD-E 46.96 46.55 120.40 48.00 115.40 46.51 11.42 120.20 81.18 44.34 77.00

LOGACD-W 32.46 32.11 83.40 24.10 65.12 32.03 20.25 83.24 37.34 20.70 35.70

LOGACD-G 18.36 18.06 81.77 27.01 68.91 17.98 23.15 81.62 30.31 23.60 33.39

LOGACD-B 20.13 19.84 83.88 25.91 68.27 19.76 23.41 83.73 34.13 23.17 34.90

BCACD-E 35.58 35.15 125.10 41.99 121.30 35.10 20.40 125.00 63.99 42.95 62.02

BCACD-W 27.26 26.88 97.34 21.51 78.30 26.84 8.28 97.28 18.64 19.22 20.37

BCACD-G 14.76 14.41 94.42 22.01 80.60 14.40 5.84 94.36 15.51 20.49 20.90

BCACD-B 16.44 16.11 97.58 22.13 81.23 16.10 6.45 97.52 17.62 20.63 21.35

EXPACD-E 35.85 35.41 125.20 41.62 121.30 35.41 16.03 125.10 67.53 45.87 65.03

EXPACD-W 30.10 29.71 97.05 21.10 77.96 29.70 8.01 96.95 20.84 20.31 21.91

EXPACD-G 17.05 16.68 95.07 17.09 80.73 16.67 8.60 94.97 14.85 14.55 20.30

EXPACD-B 18.04 17.68 98.42 18.88 81.45 17.68 7.80 98.33 18.64 16.99 22.19

TACD-E 38.61 38.17 127.10 43.62 124.80 38.13 23.66 127.10 65.88 46.97 66.24

TACD-W 12.57 12.51 12.56 12.94 5.62 12.50 9.56 12.54 14.78 12.83 13.80

TACD-G 12.68 12.49 50.14 18.23 31.63 12.47 10.00 50.09 22.31 15.30 27.02

TACD-B 10.30 10.15 52.08 16.25 30.64 10.13 11.66 52.03 12.84 13.85 13.18

RSACD-E 40.79 40.67 35.69 34.25 18.62 40.63 30.35 35.57 28.98 36.25 25.63

RSACD-W 42.37 42.20 57.36 35.76 50.93 42.15 36.79 57.21 31.97 35.81 33.61

RSACD-G 13.52 13.47 11.22 16.46 11.21 13.44 17.43 11.14 23.29 18.49 26.80

RSACD-B 24.63 24.45 36.86 15.14 30.51 24.35 24.94 36.82 25.49 16.20 27.29

This table reports Mz(m, l) diagnostic test statistics for the serial dependence of generalized residuals {Zi}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mz(0, 0)

represents statistics on i.i.d. test. Mz(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mz(l, 1),Mz(2, 2),Mz(3, 3),Mz(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mz(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Panel D. Out-of-sample generalized residuals of Yen/Dollar

Model M(0,0) M(1,0) M(2,0) M(3,0) M(4,0) M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

LINACD-E 70.29 70.01 105.10 81.70 101.00 69.90 40.51 105.00 55.51 83.87 57.26

LINACD-W 67.90 67.57 79.29 52.02 65.41 67.42 22.56 79.26 20.49 40.35 16.10

LINACD-G 47.79 47.42 83.62 35.30 70.55 47.27 23.81 83.61 17.84 25.97 15.06

LINACD-B 57.23 56.88 80.93 43.80 67.60 56.74 22.86 80.91 19.45 33.52 15.74

LOGACD-E 72.53 72.27 98.09 83.60 93.81 72.27 8.72 97.96 72.34 78.73 72.14

LOGACD-W 51.80 51.46 74.76 37.43 59.54 51.38 10.24 74.61 46.02 26.15 33.74

LOGACD-G 27.28 26.91 80.94 18.43 66.06 26.82 13.10 80.82 42.04 11.00 31.21

LOGACD-B 35.11 34.75 78.22 24.86 63.35 34.66 12.33 78.10 44.05 16.10 32.89

BCACD-E 53.74 53.45 100.20 63.77 96.56 53.40 22.21 100.20 59.44 66.05 61.59

BCACD-W 47.83 47.49 81.17 37.00 66.98 47.42 7.77 81.11 28.37 28.87 21.39

BCACD-G 29.40 29.02 85.59 24.12 71.83 28.96 5.22 85.54 26.73 17.01 20.70

BCACD-B 36.66 36.31 83.17 29.76 69.51 36.25 6.36 83.11 27.74 22.36 21.31

EXPACD-E 53.24 52.94 100.50 63.67 97.11 52.95 18.52 100.40 62.59 71.57 64.80

EXPACD-W 49.53 49.18 83.32 38.55 68.90 49.15 8.28 83.24 30.36 35.55 23.36

EXPACD-G 34.13 33.75 87.76 27.26 73.80 33.72 8.03 87.68 27.47 24.38 22.06

EXPACD-B 39.42 39.06 85.53 31.76 71.54 39.04 7.75 85.45 29.12 29.14 22.91

TACD-E 41.06 40.74 97.96 51.75 95.79 40.71 24.22 97.88 64.03 58.31 66.80

TACD-W 10.44 10.43 2.51 12.23 -0.37 10.43 5.39 2.47 15.83 9.86 10.43

TACD-G 12.63 12.58 7.97 13.13 -0.25 12.57 5.70 7.94 17.34 10.11 11.17

TACD-B 3.91 3.78 35.36 5.52 15.63 3.78 4.26 35.33 16.55 4.95 10.91

RSACD-E 7.95 7.87 9.85 5.03 9.52 7.82 13.15 9.84 12.36 4.97 10.62

RSACD-W 13.30 13.21 29.13 9.99 19.67 13.14 30.65 29.09 19.63 11.18 14.01

RSACD-G 6.37 6.32 6.76 5.07 8.62 6.29 8.76 6.71 21.71 5.05 25.20

RSACD-B 4.55 4.48 13.65 2.58 11.81 4.37 31.14 13.62 12.28 4.04 9.87

This table reports Mz(m, l) diagnostic test statistics for the serial dependence of generalized residuals {Zi}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mz(0, 0)

represents statistics on i.i.d. test. Mz(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mz(l, 1),Mz(2, 2),Mz(3, 3),Mz(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mz(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Table 5: Separate Inference Statistics for in-sample and out-of-sample residuals of ACD models

Panel A. In-sample residuals of Euro/Dollar

Model Mε(0, 0) Mε(1, 0) Mε(2, 0) Mε(3, 0) Mε(4, 0) Mε(1, 1) Mε(1, 2) Mε(2, 1) Mε(2, 2) Mε(3, 3) Mε(4, 4)

LINACD-E 40.56 11.05 1.43 -0.79 -1.28 6.56 -0.43 0.78 -1.25 -0.79 -0.85

LINACD-W 22.07 7.46 3.54 -0.37 -1.12 7.57 0.06 2.27 -1.50 -1.19 -0.73

LINACD-G 22.04 16.73 6.13 0.20 -0.90 15.43 1.20 3.93 -1.01 -1.61 -1.15

LINACD-B 21.19 14.10 4.88 -0.12 -1.00 13.15 0.56 3.04 -1.39 -1.46 -0.98

LOGACD-E 61.42 19.94 1.02 -0.08 -0.80 26.59 13.95 0.50 5.10 -0.53 -1.41

LOGACD-W 40.18 8.44 3.06 0.74 -0.38 10.73 8.34 0.06 4.01 0.44 -1.75

LOGACD-G 24.73 6.59 5.81 1.90 0.38 2.26 4.09 1.41 5.42 6.46 2.71

LOGACD-B 27.92 6.93 5.14 1.52 0.11 3.46 4.99 1.08 5.24 4.60 0.65

BCACD-E 35.44 7.61 1.97 -0.46 -1.12 4.87 -0.50 1.02 -1.45 -1.12 -0.71

BCACD-W 21.25 5.64 4.19 0.19 -0.76 4.36 -0.28 2.39 -0.84 -1.68 -1.21

BCACD-G 19.41 13.24 6.55 0.98 -0.26 8.23 0.37 4.43 2.58 -0.60 -1.83

BCACD-B 19.99 12.23 5.57 0.60 -0.46 7.87 0.12 3.62 0.99 -1.62 -1.61

EXPACD-E 39.75 8.36 1.56 -0.41 -1.05 4.62 -0.54 1.13 -1.49 -1.22 -0.76

EXPACD-W 24.22 3.56 3.57 0.26 -0.64 3.38 0.22 2.49 0.16 -1.81 -1.45

EXPACD-G 17.53 8.64 5.96 1.12 0.05 6.35 1.43 5.84 7.67 4.47 0.29

EXPACD-B 18.71 7.68 5.03 0.73 -0.23 5.91 1.04 4.45 4.60 0.69 -1.62

TACD-E 36.14 5.65 2.21 -0.19 -0.89 4.20 0.65 0.57 -1.17 -1.01 -0.71

TACD-W 26.86 4.47 4.65 1.13 0.13 3.58 1.64 2.78 0.57 -1.65 -1.64

TACD-G 20.10 7.15 5.12 0.67 -0.28 3.30 -0.07 3.39 0.58 -1.70 -1.60

TACD-B 25.20 4.29 2.48 -0.11 -0.79 5.99 4.85 1.74 2.74 -1.59 -1.53

RSACD-E 100.90 48.27 5.07 2.59 1.90 47.67 18.11 2.34 3.74 2.30 1.53

RSACD-W 82.47 27.87 3.40 2.08 1.01 30.17 11.52 1.59 3.78 4.12 2.57

RSACD-G 36.85 11.02 2.24 -0.36 -1.03 8.91 1.90 0.50 -0.57 -1.26 -0.85

RSACD-B 167.80 127.40 10.19 0.60 -0.97 123.90 32.04 15.11 11.72 1.28 -1.03

This table reports Mε(m, l) diagnostic test statistics for the serial dependence of standardized residuals {ε̂i}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mε(0, 0)

represents statistics on i.i.d. test. Mε(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mε(l, 1),Mε(2, 2),Mε(3, 3),Mε(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mε(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Panel B. In-sample residuals of Yen/Dollar

Model Mε(0, 0) Mε(1, 0) Mε(2, 0) Mε(3, 0) Mε(4, 0) Mε(1, 1) Mε(1, 2) Mε(2, 1) Mε(2, 2) Mε(3, 3) Mε(4, 4)

LINACD-E 16.41 6.77 2.19 0.58 -0.09 5.23 0.99 2.19 -0.40 -1.10 -0.98

LINACD-W 12.02 6.48 5.78 2.32 0.92 5.98 1.68 4.68 -0.15 -1.07 -0.95

LINACD-G 12.60 10.58 8.78 3.08 1.11 9.54 2.07 6.35 -0.23 -1.03 -0.85

LINACD-B 11.87 8.18 7.45 2.91 1.17 7.57 1.95 5.69 -0.13 -1.05 -0.92

LOGACD-E 42.63 22.21 3.23 1.61 1.20 32.67 31.36 2.96 8.97 0.60 -0.71

LOGACD-W 28.12 11.38 4.44 2.36 1.58 16.14 21.85 0.79 4.29 -0.35 -0.74

LOGACD-G 18.61 8.14 6.51 2.86 1.65 5.28 12.49 0.38 0.97 -0.77 -0.76

LOGACD-B 21.63 8.62 5.71 2.69 1.66 8.73 15.97 0.39 2.03 -0.65 -0.75

BCACD-E 14.12 4.70 3.50 1.77 0.88 3.91 0.31 2.24 -0.88 -1.14 -0.97

BCACD-W 10.38 5.16 7.08 3.03 1.36 3.65 -0.09 4.26 -0.81 -1.05 -0.85

BCACD-G 10.78 9.30 9.42 3.19 1.19 5.77 -0.29 5.38 -0.84 -0.98 -0.76

BCACD-B 10.33 7.37 8.64 3.26 1.32 4.86 -0.19 5.08 -0.80 -1.01 -0.80

EXPACD-E 15.54 4.73 2.89 1.65 0.91 3.57 -0.02 1.72 -0.94 -1.14 -0.97

EXPACD-W 10.54 3.56 6.11 2.96 1.45 2.65 -0.11 3.54 -0.83 -1.08 -0.88

EXPACD-G 9.36 6.05 8.66 3.48 1.41 4.33 0.13 4.89 -0.81 -1.07 -0.84

EXPACD-B 9.65 4.83 7.73 3.38 1.49 3.52 0.01 4.41 -0.81 -1.07 -0.86

TACD-E 15.46 4.41 3.89 2.54 1.55 4.23 2.92 1.34 -0.89 -1.23 -1.09

TACD-W 13.07 3.21 4.68 2.66 1.26 2.52 0.76 2.28 -1.04 -1.27 -1.08

TACD-G 10.89 3.26 6.50 3.38 1.46 1.92 0.18 3.34 -1.03 -1.16 -0.94

TACD-B 17.13 5.65 1.23 0.60 0.21 11.79 13.44 0.27 3.72 -0.08 -0.95

RSACD-E 36.89 18.44 2.05 1.12 0.91 25.70 21.56 1.61 4.82 -0.21 -0.82

RSACD-W 58.52 33.25 8.92 4.90 3.40 28.24 13.61 1.07 2.33 -0.27 -0.82

RSACD-G 16.93 6.65 3.09 1.56 0.74 6.53 2.24 1.54 -0.76 -1.24 -1.09

RSACD-B 117.50 100.80 16.23 3.17 0.44 98.16 29.62 17.85 8.41 -0.39 -1.07

This table reports Mε(m, l) diagnostic test statistics for the serial dependence of standardized residuals {ε̂i}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mε(0, 0)

represents statistics on i.i.d. test. Mε(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mε(l, 1),Mε(2, 2),Mε(3, 3),Mε(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mε(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Panel C. Out-of-sample residuals of Euro/Dollar

Model Mε(0, 0) Mε(1, 0) Mε(2, 0) Mε(3, 0) Mε(4, 0) Mε(1, 1) Mε(1, 2) Mε(2, 1) Mε(2, 2) Mε(3, 3) Mε(4, 4)

LINACD-E 13.45 6.54 9.38 5.15 2.72 5.20 1.16 9.06 1.34 -0.84 -0.92

LINACD-W 19.77 19.86 18.11 7.74 3.46 18.47 4.66 14.70 1.69 -0.90 -0.85

LINACD-G 36.66 39.34 21.17 6.64 2.34 32.78 6.04 15.07 0.81 -0.91 -0.77

LINACD-B 31.15 34.15 21.21 7.36 2.73 29.26 5.83 15.59 1.12 -0.92 -0.80

LOGACD-E 25.27 12.54 7.41 4.14 2.65 11.50 21.11 0.91 4.09 -0.44 -0.75

LOGACD-W 21.62 13.73 10.52 4.74 2.58 4.84 17.12 1.21 2.08 -0.84 -0.85

LOGACD-G 22.00 19.74 11.64 4.48 2.30 2.53 12.62 1.95 0.18 -1.12 -0.93

LOGACD-B 22.12 18.82 11.83 4.76 2.48 2.65 13.97 1.77 0.61 -1.12 -0.98

BCACD-E 12.24 6.36 10.20 5.07 2.56 3.91 -0.67 8.01 -0.03 -0.93 -0.85

BCACD-W 18.38 18.68 16.27 6.03 2.46 11.73 0.04 10.53 -0.24 -0.94 -0.79

BCACD-G 29.83 33.45 17.20 4.86 1.55 18.19 0.12 9.42 -0.74 -0.98 -0.74

BCACD-B 27.77 31.28 18.02 5.56 1.91 18.13 0.29 10.44 -0.53 -0.99 -0.78

EXPACD-E 12.29 5.05 8.36 4.21 2.16 2.35 -0.80 6.35 -0.24 -0.91 -0.84

EXPACD-W 15.25 13.28 13.63 5.37 2.28 7.60 -0.01 8.59 -0.34 -0.89 -0.78

EXPACD-G 24.48 26.45 16.25 5.03 1.74 14.13 0.36 8.95 -0.62 -0.86 -0.72

EXPACD-B 21.86 23.51 16.18 5.36 1.91 12.75 0.27 9.22 -0.50 -0.89 -0.74

TACD-E 11.83 4.21 8.27 2.98 0.74 1.74 -0.92 5.79 -0.71 -0.89 -0.70

TACD-W 14.42 11.14 13.07 4.72 1.51 5.45 -0.93 8.29 -0.52 -0.90 -0.75

TACD-G 21.45 22.08 15.16 4.33 1.28 9.34 -0.90 8.12 -0.89 -0.86 -0.71

TACD-B 14.29 10.98 10.82 3.67 1.41 1.02 2.07 3.42 -1.38 -0.95 -0.71

RSACD-E 67.11 47.10 10.25 3.73 2.45 50.33 24.57 8.32 1.64 -1.01 -0.71

RSACD-W 52.64 31.58 6.85 2.63 2.02 31.90 20.97 2.80 0.05 -0.78 -0.82

RSACD-G 13.37 7.97 10.16 4.94 2.42 2.83 -0.77 6.03 -1.11 -1.03 -0.84

RSACD-B 90.29 81.67 15.08 9.49 7.36 83.74 36.67 18.17 20.74 3.78 -0.90

This table reports Mε(m, l) diagnostic test statistics for the serial dependence of standardized residuals {ε̂i}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mε(0, 0)

represents statistics on i.i.d. test. Mε(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mε(l, 1),Mε(2, 2),Mε(3, 3),Mε(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mε(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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Panel D. Out-of-sample residuals of Yen/Dollar

Model Mε(0, 0) Mε(1, 0) Mε(2, 0) Mε(3, 0) Mε(4, 0) Mε(1, 1) Mε(1, 2) Mε(2, 1) Mε(2, 2) Mε(3, 3) Mε(4, 4)

LINACD-E 15.47 7.02 3.71 0.84 -0.36 4.20 0.91 3.31 0.08 -1.13 -1.00

LINACD-W 10.44 5.37 6.78 2.31 0.32 4.88 2.42 6.12 0.74 -1.05 -0.98

LINACD-G 10.57 8.02 9.95 3.45 0.75 8.56 4.18 8.79 1.28 -1.05 -0.99

LINACD-B 10.08 6.42 8.37 2.97 0.64 6.53 3.21 7.45 0.99 -1.03 -0.97

LOGACD-E 40.25 23.54 2.57 0.46 -0.42 22.68 10.44 0.41 -0.51 -1.14 -0.73

LOGACD-W 24.55 10.63 3.41 0.65 -0.60 8.98 5.55 0.54 -1.30 -1.09 -0.71

LOGACD-G 15.53 6.02 6.22 1.47 -0.49 1.78 2.12 2.44 -1.52 -1.16 -0.71

LOGACD-B 18.15 6.87 4.92 0.98 -0.62 3.73 3.26 1.51 -1.50 -1.10 -0.71

BCACD-E 13.56 6.28 5.19 2.29 0.94 4.47 0.14 3.75 -0.60 -1.11 -0.93

BCACD-W 9.55 5.76 8.01 3.38 1.31 4.62 0.18 5.84 -0.45 -1.07 -0.86

BCACD-G 10.22 9.15 9.90 2.72 0.21 7.07 0.23 7.10 -0.51 -0.98 -0.70

BCACD-B 9.59 7.50 9.19 3.16 0.75 5.98 0.24 6.63 -0.48 -1.03 -0.78

EXPACD-E 14.97 7.07 4.19 1.58 0.51 4.69 -0.01 2.79 -0.87 -1.13 -0.90

EXPACD-W 9.73 4.92 6.43 2.63 1.05 3.53 -0.01 4.36 -0.75 -1.16 -0.93

EXPACD-G 8.76 6.46 8.47 3.04 0.95 4.78 0.14 5.73 -0.71 -1.15 -0.88

EXPACD-B 8.93 5.68 7.64 2.95 1.09 4.18 0.06 5.16 -0.73 -1.15 -0.90

TACD-E 12.24 7.66 6.42 2.54 1.27 5.30 0.28 3.95 -0.81 -1.06 -0.85

TACD-W 10.67 5.18 5.73 2.46 1.26 3.72 0.04 3.27 -1.18 -1.20 -0.94

TACD-G 9.40 5.37 7.02 2.97 1.48 3.67 -0.27 4.22 -1.16 -1.27 -1.01

TACD-B 14.58 5.89 1.79 0.68 0.49 6.27 2.98 0.27 -0.94 -1.15 -0.80

RSACD-E 35.67 21.31 2.31 0.68 -0.07 19.52 7.66 0.34 -0.65 -1.40 -1.02

RSACD-W 33.34 16.50 8.00 5.29 3.35 14.76 7.01 4.08 -0.29 -1.59 -1.36

RSACD-G 15.00 7.92 5.25 2.24 1.13 5.83 0.59 3.26 -0.89 -1.08 -0.86

RSACD-B 112.20 99.65 12.55 3.20 0.32 84.96 17.18 10.19 12.35 8.73 0.63

This table reports Mε(m, l) diagnostic test statistics for the serial dependence of standardized residuals {ε̂i}
of linear ACD, log ACD, Box-Cox ACD, Exponential ACD, threshold ACD and Markov regime switching

models based on standard exponential, Weibull, generalized Gamma and Burr innovation distributions re-

spectively. The whole sample are seasonally adjusted price durations from July, 1, 2000 to June 30, 2001

on Wednesdays, with total 20,584 and 15,818 observations for Euro/Dollar and Yen/Dollar respectively.

The first half of the samples are used for estimation and the second half are used for forecasting. Mε(0, 0)

represents statistics on i.i.d. test. Mε(l, 0), l = 1, 2, 3, 4 represent test statistics on martingale, ARCH effect,

conditional skewness and conditional heterokurtosis respectively. And Mε(l, 1),Mε(2, 2),Mε(3, 3),Mε(4, 4)

are very sensitive to autocorrelations in mean, variance, skewness, and kurtosis of the generalized residuals

respectively. We only show results for preliminary lag truncation order p = 20, the results for other lag

order is similar. The Mε(m, l) tests are asymptotically one sided N(0, 1) test and upper-tailed critical values

should be used, which are 1.65 and 2.33 at the 5% and 1% levels, respectively.
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