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Abstract

In this paper, we consider testing marginal normal distributional assumptions. More precisely,
we propose tests based on moment conditions implied by normality. These moment condi-
tions are known as the Stein (Proceedings of the Sixth Berkeley Symposium on Mathematics,
Statistics and Probability, Vol. 2, pp. 583–602) equations. They coincide with the 8rst class of
moment conditions derived by Hansen and Scheinkman (Econometrica 63 (1995) 767) when the
random variable of interest is a scalar di;usion. Among other examples, Stein equation implies
that the mean of Hermite polynomials is zero. The GMM approach we adopt is well suited
for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when
the tests depend on unknown parameters that have to be estimated. In particular, we character-
ize the moment conditions that are robust against parameter uncertainty and show that Hermite
polynomials are special examples. This is the main contribution of the paper. The second rea-
son for using GMM is that our tests are also valid for time series. In this case, we adopt a
heteroskedastic-autocorrelation-consistent approach to estimate the weighting matrix when the
dependence of the data is unspeci8ed. We also make a theoretical comparison of our tests
with Jarque and Bera (Econom. Lett. 6 (1980) 255) and OPG regression tests of Davidson and
MacKinnon (Estimation and Inference in Econometrics, Oxford University Press, Oxford). Finite
sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally,
two applications to GARCH and realized volatility models are presented.
c© 2004 Published by Elsevier B.V.

JEL classi1cation: C12; C15

Keywords: Stein equation; Hermite polynomials; Parameter uncertainty; HAC

∗ Corresponding author. Tel.: +1-514-343-2399; fax: +1-514-343-7221.
E-mail addresses: bontemps@recherche.enac.fr (C. Bontemps), nour.meddahi@umontreal.ca

(N. Meddahi).
URLs: http://www.recherche.enac.fr/∼bontemps/, http://www.mapageweb.umontreal.ca/meddahin/

0304-4076/$ - see front matter c© 2004 Published by Elsevier B.V.
doi:10.1016/j.jeconom.2004.02.014

mailto:bontemps@recherche.enac.fr
mailto:nour.meddahi@umontreal.ca
http://www.recherche.enac.fr/~bontemps/
http://www.mapageweb.umontreal.ca/meddahin/


150 C. Bontemps, N. Meddahi / Journal of Econometrics 124 (2005) 149–186

1. Introduction

In many econometric models, distributional assumptions play an important role in
the estimation, inference and forecasting procedures. Robust estimation methods against
distributional assumption are available, such as the quasi-maximum-likelihood (White,
1982; QML) and generalized method of moments (Hansen, 1982; GMM). However,
knowing the true distribution of the considered random variable may be useful for im-
proving inference. Such is the case in stochastic volatility models where several studies
have shown that simulation and Bayesian methods outperform the QML
and GMM methods (Jacquier et al., 1994; Kim et al., 1998; Andersen et al., 1999;
Gallant and Tauchen, 1999). Moreover, knowing the distribution is also crucial when
one forecasts nonlinear variables like volatility in the EGARCH model of Nelson
(1991), or the high-frequency-realized volatility model of Andersen et al. (2001;
ABDL). This is also important when one evaluates density forecasts as in Diebold
et al. (1998). In continuous time modeling, Chen et al. (2000) argue that an inter-
esting approach is to 8rst specify the unconditional distribution of the process, and
then specify the di;usion term. Therefore, developing test procedures for distributional
assumption diagnostics in both cross-sectional and time-series settings is of particular
interest.
The main purpose of our paper is to provide a new approach for testing normality.

We consider normality given its importance in the econometric literature. Moreover,
econometricians are more familiar with testing normality. Finally, any continuous dis-
tribution may be transformed on a normal one.
There is an important literature on testing normality. This includes tests based on

the cumulative distribution function (Kolmogorov, 1933; Smirnov, 1939), the charac-
teristic function (Koutrouvelis, 1980; Koutrouvelis and Kellermeier, 1981; Epps and
Pulley, 1983), the moment generating function (Epps et al., 1982), the third and fourth
moment (Mardia, 1970; Bowman and Shenton, 1975; Jarque and Bera, 1980), and
the Hermite polynomials (Kiefer and Salmon, 1983; Hall, 1990; van der Klaauw and
Koning, 2003). 1

Our approach is based on testing moment conditions. The conditions we consider are
based on Stein (1972), where it is shown that the marginal distribution of a random
variable is normal with zero mean and unit variance if and only if a particular set of
moment conditions hold. Each moment condition is known as the Stein equation (see
for instance Schoutens, 2000). We show that special examples of this equation corre-
spond to the zero mean of any Hermite polynomial. Interestingly, the Stein equation
coincides with the 8rst class of moment conditions given by Hansen and Scheinkman
(1995) for continuous time processes when one considers a normal process, that is the
Ornstein–Uhlenbeck process. 2

1 Multivariate tests are also based on the third and fourth moments (Mardia, 1970; Bera and John, 1983;
Richardson and Smith, 1993; Kilian and Demiroglu, 2000; Fiorentini et al., 2003a).

2 Hansen and Scheinkman (1995) present two classes of moment conditions related, respectively, to the
marginal and conditional distributions of the process. Note, however, that while Hansen and Scheinkman
(1995) derived these moment conditions in a Markovian case, we do not make this assumption.
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We used the GMM approach for testing the Stein equation. The GMM approach
is very appealing for two reasons. It is well suited for correcting the test statistic
distribution when one uses estimated parameters. Moreover, in the GMM setting, it is
easy to take into account potential dependence in the data when one tests marginal
moment conditions.
In general, the normality assumption is made for unobservable variables. Hence, one

has to estimate the model parameters and then test normality on the 8tted variables
such as the residuals. As a consequence, one has to take into account the parameter
uncertainty, since it is well known that, in general, the distribution of the test statistic
is not the same when one uses the true parameter and an estimator. This problem leads
Lilliefors (1967) to tabulate the Kolmogorov–Smirnov test statistic when one estimates
the mean and the variance of the distribution. In the linear homoskedastic model, White
and MacDonald (1980) stated that various tests are robust against parameter uncertainty,
particularly in tests based on moments that used standardized residuals. Dufour et al.
(1998) developed Monte Carlo tests to take into account parameter uncertainty in
the linear homoskedastic regression model in 8nite samples. More recently, several
solutions have been proposed in the literature: Bai (2003) and Duan (2003) proposed
transformations of their test statistics that are robust against parameter uncertainty;
Thompson (2002) proposed upper bound critical values for his tests; Hong and Li
(2002) used separate inference procedure by splitting the sample; while Corradi and
Swanson (2002) used the bootstrap.
It turns out that the GMM setting is well suited for incorporating parameter un-

certainty in testing procedures by using Newey (1985) and Tauchen (1985); see also
Gallant (1987), Gallant and White (1988), and Wooldridge (1990). In this paper, we
show that some testing functions are robust to the parameter uncertainty problem. That
is, the asymptotic distribution of the feasible test statistic based on an estimated pa-
rameter is identical to that of the test statistic based on the true (unknown) parameter.
Hermite polynomials are special examples of functions that have this robustness prop-
erty. This result is a generalization of Kiefer and Salmon (1983) who showed that tests
using Hermite polynomials are robust to parameter uncertainty when one considers a
nonlinear homoskedastic regression estimated by the maximum likelihood method. In
contrast, our result holds for more general models and for any estimation method.
This property is very important when one uses advanced technical methods as in the
stochastic volatility case. This result is the main contribution of the paper.
The second reason for using GMM is, when the variable of interest is serially cor-

related, the GMM setting is also well suited to take into account this dependence by
using the heteroskedastic-autocorrelation-consistent (HAC) method of Newey and West
(1987) and Andrews (1991). Using a HAC procedure in testing marginal distributions
was already adopted by Richardson and Smith (1993) and Bai and Ng (2002) for
testing normality, AJKt-Sahalia (1996) and Conley et al. (1997) for testing marginal
distributions of nonlinear scalar di;usion processes.
The paper is organized as follows. In Section 2, we introduce the Stein equation and

characterize its relationships with Hermite polynomials and Hansen and Scheinkman
(1995) moment conditions. In Section 3, we derive the test statistics we consider in
both cross-sectional and time series cases. Then, we study the parameter uncertainty
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problem in Section 4. In Section 5, we provide an extensive Monte Carlo study in order
to assess the 8nite sample properties of the test statistics we consider and to compare
them with the most popular methods, i.e., the Kolmogorov–Smirnov and Jarque–Bera
tests. Section 6 applies our theory to two examples from the volatility literature while
the last section concludes the paper. All the proofs are provided in the appendix.

2. The Stein equation

In this section, we 8rst introduce the Stein (1972) equation which will be the basis of
the test functions we consider to test normality. Then we specify this equation when
one considers the Hermite polynomials. This is important because the most popular
normality test in the econometric literature, namely the Jarque and Bera (1980) test,
is based on moment conditions on the third and fourth Hermite polynomials. Finally,
we relate the Stein equation to the 8rst moment conditions derived by Hansen and
Scheinkman (1995) in the case of a continuous time process.

2.1. The Stein equation

Stein (1972) shows that a random variable X has a standard normal distribution
N(0; 1) if and only if, for any di;erentiable function f such that E|f′(Z)|¡ + ∞
where Z is N(0; 1), 3 we have

E[f′(X )− Xf(X )] = 0: (2.1)

It is straightforward to show that (2.1) holds under normality. Hence, the main result of
Stein (1972) is that (2.1) characterizes the normal distribution. The Stein equation (2.1)
has several implications, like the recursive moment equation E[X i+1]= iE[X i−1]; (with
f(X ) = X i). It is worth noting that Amemiya (1977) used this equality to show the
consistency of the maximum likelihood estimator for nonlinear simultaneous equation
models while Davidson and MacKinnon (1984) used it when they developed their
speci8cation tests based on double-length arti8cial linear regressions.
The Stein equation (2.1) is the basic test function we consider for testing normal-

ity. This may be applied to monomials, polynomials and more general functions. An
important property of the Stein equation is by construction, the expectation of the con-
sidered function is zero. Therefore, one does not compute the analytic formula of the
moment as one would when he uses, for instance, marginal moments. In other words,
if one considers an integrable function g and wants to check that the empirical coun-
terpart of E[g(X )] is close to the theoretical formula, then by using the Stein equation,
one will get another function (namely XG(X ) where G(·) is any primitive function
of g(·)) whose population mean equals E[g(X )]. Therefore, one can test normality by
comparing the empirical counterparts of E[g(X )] and E[XG(X )]. 4

3 Observe that in the normal case, we have E|Xf(X )|¡ + ∞ when E|f′(X )|¡ + ∞.
4 Another solution is to de8ne, when it is possible, the function h(X ) ≡ g(X )=X . In this case, if one can

use the function h in the Stein equation, then one gets E[g(X )] = E[Xh(X )] = E[h′(X )].
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There are some functions of interest for which the Stein equation becomes simple.
This is the case for the Hermite polynomials we consider below.

2.2. Hermite polynomials

The normalized Hermite polynomial Hi associated with the N(0; 1) distribution is
de8ned by

Hi(x) = exp
(

x2

2

)
(−1)i√

i!

di exp(−x2=2)
dxi : (2.2)

From (2.2), it is easy to show that the Hermite polynomials are given by the recursive
formula

∀i¿ 1; Hi(x) =
1√
i
{xHi−1(x)− √

i − 1Hi−2(x)};

H0(x) = 1; H1(x) = x: (2.3)

By applying (2.3), we have

H2(x) =
1√
2
(x2 − 1); H3(x) =

1√
6
(x3 − 3x);

H4(x) =
1√
24

(x4 − 6x2 + 3): (2.4)

When a random variable X follows a normal distribution N(0; 1), the transformed
random variables Hi(X ), i = 0; 1; : : : ; have some interesting properties. In particular,
they are orthonormal, that is

E[Hi(X )Hj(X )] = �ij; (2.5)

where �ij is the Kronecker symbol. By applying (2.5) to j = 0 and i 	= 0, one gets

∀i¿ 0; E[Hi(X )] = 0; (2.6)

that is, the Hermite polynomials Hi(X ) are centered for i¿ 0.
In order to characterize the relationships between the Stein equation (2.1) and the

Hermite polynomials, note that (2.2) implies that the following restrictions are ful8lled
by the derivatives of the Hermite polynomials:

H ′
i (x) =

√
iHi−1(x) and H ′′

i (x)− xH ′
i (x) + iHi(x) = 0: (2.7)

Let us now apply the Stein equation (2.1) to the function H ′
i (x)=

√
i. This function is

clearly di;erentiable and integrable. Therefore, we have

1√
i
E[H ′′

i (X )− XH ′
i (X )] = 0;

which implies (2.6) by using the second result in (2.7). As a consequence, the Stein
equation (2.1) implies (2.6). It turns out that the converse also holds.
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Proposition 2.1. Let X be a random variable such that ∀i¿ 0, E[Hi(X )] = 0. Then,
Eq. (2.1) holds for any di?erentiable function f such that E[|f′(Z)|]¡ +∞ where
Z is assumed to be N(0; 1). Consequently, a random variable X is N(0; 1) if and
only if (2.6) holds.

This result is established by Gallant (1980, Theorem 3, p. 192) for any distribution
that admits some polynomials as a basis of the space of the square-integrable functions,
which is the case for the normal distribution. We therefore dropped it from this paper;
see however the previous version, Bontemps and Meddahi (2002), for a proof. This
proposition means that for statistical inference purposes, in particular testing, one could
use Hermite polynomials only.

2.3. Continuous time case

Consider a univariate di;usion process Xt assumed to be the stationary solution of

dXt = �(Xt) dt + �(Xt) dWt; (2.8)

where Wt is a standard Brownian process. Then, Hansen and Scheinkman (1995) pro-
vide two sets of moment conditions related to the marginal and conditional distributions
of Xt , respectively. For the marginal distribution, Hansen and Scheinkman (1995) show
that

E[Ag(Xt)] = 0; (2.9)

where g is assumed to be twice di;erentiable and square-integrable with respect to
the marginal distribution of Xt and A is the in8nitesimal generator associated with
di;usion (2.8), that is

Ag(x) = �(x)g′(x) +
�2(x)
2

g′′(x): (2.10)

A well-known continuous time process for which the marginal distribution is N(0; 1)
is the standardized Ornstein–Uhlenbeck process de8ned by

dXt =−kXt dt +
√
2k dWt; k ¿ 0; X0 ∼ N(0; 1): (2.11)

For this process, Hansen and Scheinkman (1995) moment condition (2.9) becomes

E[− kXtg′(Xt) + kg′′(Xt)] = 0: (2.12)

Thus, by considering the function f de8ned by f ≡ g′, we obtain the Stein equation
(2.1) (since k 	= 0). Thus, the Hansen and Scheinkman (1995) moment condition (2.9)
coincides with the Stein equation (2.1).
The continuous time setting provides examples of processes where the marginal

distribution is normal while the conditional distribution is not. A 8rst example may be
constructed as follows. For a given speci8cation of �(x) and �(x), the marginal density
function of the process Xt is, up to a scale, 5

�(x)−2 exp
(∫ x

z

2�(u)
�(u)2

du
)

:

5 For a given z, the scale parameter is chosen so that the density integral equals 1.
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This density function suggests that two di;erent speci8cations of �(x) and �(x) may
give the same marginal distribution. It turns out that this is the case. 6 As a con-
sequence, it is possible to get a scalar di;usion such that the marginal distribution
is N(0; 1) while the conditional distribution is not normal, that is a non-Ornstein–
Uhlenbeck process.
A second example may be obtained by subordination. More precisely, assume that

we observe a sample x1; x2; : : : ; xT of a process Xt with Xt=YSt , where Yt is a stationary
scalar di;usion and St , t = 1; : : : ; T , is a positive and increasing process with S1 = 1.
Under the assumption that the processes {Y�; �∈R+} and {St ; t ∈N∗} are independent,
the marginal distribution of the processes Xt and Yt coincide. Therefore, if the process
Yt is a standardized Ornstein–Uhlenbeck process, the marginal distribution of Xt is
N(0; 1) while its conditional distribution is (in general) not normal.

3. Test statistics

In this section, we provide the test statistics for testing normality. All of them are
based on the Stein equation (2.1). We study in detail the cross-sectional and the time
series cases. We assume that we observe a sample of the random variable of interest,
i.e., we do not take into account the potential problem of parameter uncertainty (studied
in the next section).

3.1. The general case

Consider a sample x1; : : : ; xT , of the variable of interest denoted by X . The observa-
tions may be independent or dependent. We assume that the marginal distribution of
X is N(0; 1). Let f1; : : : ; fp, be p di;erentiable functions such that f′

i is integrable.
For a real x, de8ne the vector g(x)∈Rp, whose components are (f′

i (x)− xfi(x)) for
i = 1; : : : ; p. Thus, by the Stein equation (2.1), we have E[g(X )] = 0. Throughout the
paper, we assume that any component of the vector g(X ) is square-integrable and that
the matrix � de8ned by

� ≡ lim
T→+∞

Var

[
1√
T

T∑
t=1

g(xt)

]
=

+∞∑
h=−∞

E[g(xt)g(xt−h)�]; (3.1)

is 8nite and positive de8nite, then we have (see Hansen, 1982)

1√
T

T∑
t=1

g(xt) → N(0; �); (3.2)

while (
1√
T

T∑
t=1

g(xt)

)�

�−1

(
1√
T

T∑
t=1

g(xt)

)
∼ !2(p): (3.3)

6 See AJKt-Sahalia et al. (2001) for a review of all the properties of di;usion processes we consider in this
paper.
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For the feasibility of the test procedure, one needs the matrix � or at least a con-
sistent estimator. It is clear that if one does not specify the dependence between the
observations x1; x2; : : : ; xT , then one needs to estimate �.

3.2. The cross-sectional case

Consider the cross-sectional case and assume that the observations are independent
and identically distributed (i.i.d.). In this case, we have

�= Var[g(X )] = E[g(X )g(X )�]:

Observe that by applying the Stein equation (2.1) to "(X ) = Xf(X )f(X )�, one can
show that

E[g(X )g(X )�] = E[f(X )f(X )� + f′(X )f′(X )�]: (3.4)

Two cases may arise. In the 8rst case, one can explicitly compute the matrix � and,
hence, one can use the test statistic (3.3). This is the case for the Hermite polynomials
that we consider below. In the second case, computing � explicitly is not possible (or
diPcult), then one can use any consistent estimator of � and denoted by �̂T , like

�̂1;T =
1
T

T∑
t=1

g(xt)g(xt)� or �̂2;T =
1
T

T∑
t=1

(f(xt)f(xt)�+f′(xt)f′(xt)�): (3.5)

In this case, one can use the following test statistic:(
1√
T

T∑
t=1

g(xt)

)�

�̂−1
T

(
1√
T

T∑
t=1

g(xt)

)
∼ !2(p): (3.6)

Assume now that we consider the Hermite polynomials. We have shown in the previous
section that when one applies the Stein equation (2.1) to the function
fi(x) =H ′

i+1(x)=
√

i, one gets E[Hi(X )] = 0: But the unconditional variance of Hi(x) is
one. Hence, for i¿ 0, we have

1√
T

T∑
t=1

Hi(xt) → N(0; 1) and

(
1√
T

T∑
t=1

Hi(xt)

)2
∼ !2(1): (3.7)

Moreover, the Hermite polynomials are orthogonal. Hence, the test statistic based on
di;erent Hermite polynomials are asymptotically independent. In other words, when one
uses a test statistic based on several Hermite polynomials, the corresponding matrix
� derived previously is diagonal. The diagonal matrix � is indeed the identity since
the variance of each Hermite polynomial equals 1. For instance, if we consider the
Hermite polynomials H3; H4; : : : ; Hp, then the test statistic is

p∑
i=3

(
1√
T

T∑
t=1

Hi(xt)

)2
∼ !2(p − 2): (3.8)
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It is worth noting that this result is more general than the one obtained by Kiefer and
Salmon (1983). They established (3.8) when the variables xt are estimated residuals in
a linear model when one uses the maximum likelihood method. We will discuss Kiefer
and Salmon’s (1983) results in more detail in the next section where we consider the
parameter uncertainty problem.

3.3. The time series case

Assume now that the observations are correlated and represent a sample of a process.
Then, without additional assumptions on the dependence, one cannot explicitly compute
the matrix � and has to estimate it. A traditional solution is to estimate this matrix
by using a HAC method like Newey and West (1987) or Andrews (1991). This is
one of the motivations of using a GMM approach for testing normality. This has been
used by Richardson and Smith (1993), and was more recently and independently of
our work, highlighted by Bai and Ng (2002).
In contrast to the cross-sectional case, one cannot show that test statistics based

on two di;erent Hermite polynomials are asymptotically independent. More precisely,
consider a component (i; j), with i 	= j, of the matrix �. In this case, E[Hi(xt)Hj(xt)]
is zero by the orthogonality of the Hermite polynomials (2.5). However, without ad-
ditional restrictions, E[Hi(xt)Hj(xt−h)] is in general non-zero for h 	= 0 and the matrix
� will be non-diagonal. This is probably the case for the following scalar di;usion
whose marginal distribution is N(0; 1):

dxt =
1
2

xt(1− x2t ) dt +
√
1 + x2t dWt:

In contrast, the asymptotic independence of the tests may hold if one makes ad-
ditional assumptions on the dependence of the process xt . An important example is
when one assumes that the process xt is a normal autoregressive process of order one,
AR(1), that is

xt = #xt−1 +
√
1− #2$t ; $t is i:i:d: and ∼ N(0; 1); and |#|¡ 1: (3.9)

In this case, any Hermite polynomial Hi(xt) is an AR(1) process whose autoregressive
coePcient equals #i, that is

E[Hi(xt+1)|x�; �6 t] = #iHi(xt): (3.10)

In this case, it is easy to show that

�ij =
+∞∑

h=−∞
E[Hi(xt)Hj(xt−h)] =

1 + #i

1− #i �ij: (3.11)

As a consequence, the matrix � is diagonal and, hence, the test statistics based on
di;erent Hermite polynomials are asymptotically independent. 7 Besides, when one tests
normality and ignores the dependence of the Hermite polynomials, one gets a wrong

7 This result also holds when one assumes that the process {xt} is Gaussian, which implies that (xt ; xt−h)
is Gaussian, ∀t; h. Bai and Ng (2002) used this assumption when they showed the asymptotic independence
of the skewness and excess kurtotis tests.
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distribution for the test statistic. For instance, assume that one considers a test based
on a particular Hermite polynomial Hi. Then, the test statistic becomes

1− #i

1 + #i

(
1√
T

T∑
t=1

Hi(xt)

)2
∼ !2(1): (3.12)

Thus, by ignoring the dependence of the Hermite polynomial Hi(xt), one overrejects the
normality when #¿ 0 or i is even and underrejects otherwise. Monte Carlo simulations
in Section 6 will assess this. This is important in practice since many economic time
series are positively autocorrelated.
Allowing for potential serial correlation of unknown form in testing normality is par-

ticularly important when one uses a nonlinear transform to get the variable of interest.
For instance, in the density forecast analysis (e.g., Diebold et al., 1998), the distribu-
tion of interest is not a Gaussian one, and therefore one uses a transform (through the
cumulative distribution functions of the variable of interest and the Gaussian variable)
to get a normal distribution. 8 For this example, even if the marginal distribution is
Gaussian, there is no reason to assume that this is also the case for the conditional
distribution.

3.4. Skewness and excess kurtosis

A traditional approach for testing normality is to study the skewness and excess
kurtosis of the variable of interest (Mardia, 1970; Bowman and Shenton, 1975; Jarque
and Bera, 1980). More precisely, when a random variable X is distributed asN(0; �2),
we have

E[X 3] = 0 and E[X 4 − 3�4] = 0; (3.13)

where the 8rst condition deals with skewness while the second one deals with excess
kurtosis. For simplicity, assume that we observe an i.i.d. sample x1; x2; : : : ; xT . Then,
when the parameter �2 is known, the test statistic implied by moment condition in
(3.13) is

√
T




1
T

T∑
t=1

x3t

1
T

T∑
t=1

x4t − 3�4




n→+∞−→ N

(
0

0
;

(
15�6 0

0 96�8

))
: (3.14)

Thus, skewness and excess kurtosis test statistics are asymptotically independent. More-
over, we have the following test statistic:

1
15

(
1√
T

T∑
t=1

(xt=�)3
)2

+
1
96

(
1√
T

T∑
t=1

[(xt=�)4 − 3]

)2
n→+∞−→ !2(2): (3.15)

8 Let Y be a continuous random variable with cumulative distribution function F(·); then (−1(F(X )) is
a N(0; 1), where ((·) is the cumulative distribution function of N(0; 1) random variable.
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For future reference, observe that this test statistic is di;erent from one that Jarque
and Bera (1980) had given by

1
6

(
1√
T

T∑
t=1

(xt=�̂)3
)2

+
1
24

(
1√
T

T∑
t=1

[(xt=�̂)4 − 3]

)2
n→+∞−→ !2(2); (3.16)

where �̂ is the MLE of � in a regression model. This di;erence is due to parameter
uncertainty that we consider in the following section.

4. Parameter uncertainty

In most empirical examples, the normality assumption is made for an unobservable
random variable. This is the case for a regression, linear or nonlinear, homoskedastic or
heteroskedastic, where the normality assumption is in general made on the (standard-
ized) residuals. This is also the case for nonlinear time series as volatility models (e.g.,
GARCH or stochastic volatility models). Thus, one must 8rst estimate the parameters
of the model and then get 8tted residuals. Then, one tests the normality assumption of
the residuals by using the 8tted residuals. In other empirical examples, the normality
assumption is made on observable variables but the parameter of the normal distribu-
tion, i.e., the mean and the variance, are unknown. Therefore, one must also estimate
these parameters in order to test normality.
It is well known that the asymptotic distribution of a test statistic that depends on an

unknown parameter, denoted by ) 0, may be di;erent from the asymptotic distribution
of the same test statistic applied by using a consistent estimator of ) 0, denoted by )̂T .
The main reason is one has to take into account the uncertainty of )̂T in the testing
procedure. This is known as the parameter uncertainty problem.

4.1. The traditional approach

The GMM approach is well suited for this problem, which is the 8rst reason we are
using it in the paper to test normality. Newey (1985) and Tauchen (1985) provided a
general theory for taking into account the parameter uncertainty in testing procedures.
Their approach is the following. Assume that one has to test the following moment
condition:

E[g(zt ; ) 0)] = 0; (4.1)

where zt is a random variable, potentially multivariate, and ) 0 is an unknown (vecto-
rial) parameter. Under the null hypothesis, we have

1√
T

T∑
t=1

g(zt ; ) 0)→N(0; �g) where �g = lim
T→+∞

Var

[
1√
T

T∑
t=1

g(zt ; ) 0)

]
: (4.2)

Assume that one has a square-root T consistent estimator of ) 0, denoted by )̂T , i.e.,√
T ()̂T − ) 0) → N(0; V)): (4.3)
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Then, a natural approach to test (4.1) is by using T−1=2 ∑T
t=1 g(zt ; )̂T ). Therefore, one

needs the asymptotic distribution of this test statistic. It is easily obtained by using a
Taylor approximation around the unknown parameter ) 0. More precisely, we have

1√
T

T∑
t=1

g(zt ; )̂T ) =
1√
T

T∑
t=1

g(zt ; ) 0) +

[
1
T

T∑
t=1

@g(zt ; ) 0)
@) �

]√
T ()̂T − ) 0)

+ op(1): (4.4)

De8ne the matrix Pg by

Pg = lim
T→+∞

1
T

T∑
t=1

@g(zt ; ) 0)
@) � : (4.5)

Then, we can rewrite (4.4) in the following form:

1√
T

T∑
t=1

g(zt ; )̂T ) = [Ip Pg]




1√
T

T∑
t=1

g(zt ; ) 0)

√
T ()̂T − ) 0)


+ op(1); (4.6)

where Ip is the p × p identity matrix and p the dimension of g. From (4.6), it is
clear that the asymptotic distribution of the test statistic in the left-hand side of (4.6)
depends on the asymptotic distributions of two random variables, T−1=2 ∑T

t=1 g(zt ; ) 0)
and

√
T ()̂T − ) 0) which are given, respectively, in (4.2) and (4.3), and their asymp-

totic covariance. 9 As a consequence, the parameter uncertainty generally changes the
asymptotic distribution of the test statistic when one uses an estimator instead of the
unknown parameter ) 0. This is why the Jarque and Bera (1980) test (3.16) di;ers
from (3.15). Bai and Ng (2002) also adopted the same approach by including the third
and fourth moment conditions in their estimation procedure by the GMM.
In general, the matrices that appear in the asymptotic distributions (4.2) and (4.3)

are easily estimated. However, it is diPcult to estimate the asymptotic covariance
matrix between T−1=2 ∑T

t=1 g(zt ; ) 0) and
√

T ()̂T − ) 0). This is the case when one
uses advanced estimation methods, especially simulation techniques 10 as in the case
of stochastic volatility and latent factor models. Several solutions have been proposed
in the literature to solve this problem. Bai (2003) as well as Duan (2003) proposed
transformations of their test statistics that are robust against parameter uncertainty;
Thompson (2002) proposed upper bound critical values for his tests; Hong and Li
(2002) split their sample and used the 8rst part of the sample to do the estimation and
made the test on the second part of the sample whose sample size, T2, is assumed to be
small with respect to the total sample size T (i.e., T2=T → 0 when T → +∞); Corradi
and Swanson (2002) used the bootstrap to take into account parameter uncertainty (and
serial correlation); 8nally, Dufour et al. (1998) developed Monte Carlo exact tests in
the linear homoskedastic regression model in 8nite samples.

9 We assume that the asymptotic distribution of the right-hand side of (4.6) is normal.
10 See GouriSeroux and Monfort (1996) for a review.
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4.2. Our approach

An alternative method that we adopt in this paper is to consider moment conditions
such that the matrix Pg equals zero, i.e.,

Pg = 0: (4.7)

In this case, the asymptotic distribution of T−1=2 ∑T
t=1 g(zt ; ) 0) and T−1=2 ∑T

t=1

g(zt ; )̂T ) coincide. Hence, the test statistic is robust against the parameter uncertainty.
In the sequel, we need to be more speci8c about the examples we will consider

in order to characterize the moment conditions that are robust against the parameter
uncertainty. We consider three examples:

Example 1 (Regression with exogenous variables). Let zt = (yt; x�
t )

� be a vector
where yt is an endogenous variable, xt is a (vectorial) exogenous variable. We as-
sume that there exists a unique parameter ) 0 = (.0�; /0�)� such that

yt = m(xt ; /0) + �(xt ; /0; .0)ut and ut ∼ N(0; 1); (4.8)

where .0 and /0 are real vectors and m(x; /) and �(x; /; .) are two real functions. A
special example is the cross-sectional case where the random variable ut is i.i.d. by
assumption. Another example is the time series case where the variable ut may be
serially correlated. However, it is assumed to be independent of xt .
The model adopted by Jarque and Bera (1980) is the special case, where

m(xt ; /) = x�
t / and �(xt ; /; .) = .; (4.9)

i.e., they considered a linear homoskedastic regression model with potentially correlated
residuals. Kiefer and Salmon (1983) also adopted a special case of (4.8) by assuming

�(xt ; /; .) = . and ut is i:i:d:; (4.10)

i.e., a nonlinear regression model with homoskedastic and i.i.d. errors.

Example 2 (Time series regression). This example is similar to the 8rst one, but we
now assume that the variables xt are lagged values of yt and ut is i.i.d., i.e., 11

E[yt |y�; �6 t − 1] = mt(/0); Var[yt |y�; �6 t − 1] = �2t (/
0; .0); (4.11)

ut ≡ yt − mt(/0)
�t(/0; .0)

and ut is i:i:d: and ∼ N(0; 1): (4.12)

Special examples of this case are ARMA models with GARCH errors (Bollerslev,
1986).

Example 3 (Marginal distribution of a process). In this case, we assume that we ob-
serve a sample y1; : : : ; yT , of a process whose marginal distribution is assumed to be

11 Observe that we adopt a di;erent notation than used in the 8rst example to incorporate non-Markovian
models like MA and GARCH.
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N(m0; �02) where m0 and �0 are unknown parameters. Hence, the standardized process
is N(0; 1), that is

ut ≡ yt − m0

�0
and ut ∼ N(0; 1): (4.13)

Observe that in all of these examples, the normal variable of interest ut may be
written as

ut()) =
yt − mt())

�t())
; (4.14)

where the normality assumption holds for ut() 0) and denoted by ut . We can now char-
acterize the test functions g that are robust against parameter uncertainty in Examples
1, 2 or 3.

Proposition 4.1. Consider ut as de1ned in Examples 1, 2 or 3. Let )̂T be a square-root
T consistent estimator of ) 0 such that (4.3) applies and denote by û t the correspond-
ing estimated residuals. De1ne the function g̃(·) by g̃(ut())) = g(zt ; )). Then, a suB-
cient condition such that the asymptotic distribution of the test statistics
T−1=2 ∑T

t=1 g(zt ; ) 0) and T−1=2 ∑T
t=1 g(zt ; )̂T ) coincide is

E[g̃′(ut)] = 0 and E[utg̃
′(ut)] = 0: (4.15)

This proposition means that a suPcient condition ensuring the robustness of our test
statistic against the parameter uncertainty is the orthogonality of g̃′ with H0 and H1, 12

i.e.,

E[H0(ut)g̃
′(ut)] = 0 and E[H1(ut)g̃

′(ut)] = 0: (4.16)

It is worth noting that we do not assume that the considered test statistic comes from
the Stein equation (2.1). Indeed, this result encompasses the results of White and
MacDonald (1980). Besides, this proposition holds in both cross-sectional and time
series cases. Finally, while (4.15) is a suPcient condition, it is generically necessary.
It may not be necessary for some estimators with very particular asymptotic variances.
Before further characterizing (4.16) when one considers the Stein equation (2.1),

let us apply this proposition when one considers tests based on excess skewness and
kurtosis as did Jarque and Bera (1980) and Bai and Ng (2002). More precisely, assume
that one considers the moment conditions

E[g̃1(ut)] = 0 and=or E[g̃2(ut)] = 0; where g̃1(ut) = u3t and

g̃2(ut) = u4t − 3: (4.17)

12 Observe that we explicitly use form (4.14) of ut . If one considers a more general framework like
ut = f(zt ; ) 0) as in Davidson and MacKinnon (1984), and want to test E[g̃(ut)] = E[g̃(f(zt ; ) 0))] = 0, the
suPcient condition (4.15) becomes E[g̃′(ut)(@f=@) �)(zt ; ) 0)] = 0.
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It is clear that the function g̃1 violates the 8rst condition in (4.15), while g̃2 violates
the second one. Thus, in this case, one must correct the asymptotic distribution of the
test statistic by taking into account the parameter uncertainty as did Jarque and Bera
(1980).
When one considers test statistics based on the Stein equation (2.1), that is when

one assumes that

g̃(x) = f′(x)− xf(x);

condition (4.15) may be characterized through the function f(x).

Proposition 4.2. Let f(x) be a di?erentiable function and de1ne g̃(x) by
g̃(x) ≡ f′(x)− xf(x). Then, condition (4.16) holds if and only if

E[f(ut)] = 0 and E[f′(ut)] = 0: (4.18)

This proposition may be easily applied in practice. One has to take any integrable
function denoted by s(x) such that E[|s(Z)|]¡+∞ where Z is assumed to beN(0; 1).
Then, de8ne the function Us(x) by Us(x) = s(x) − E[s(Z)] and the function Uf(x) as the
primitive of Us(x) which is centered, that is E[ Uf(Z)]=0. Then, by construction, condition
(4.18) holds for Uf(x).
When one uses the conditions based on the Hermite polynomials (2.6), the conditions

(4.15) and (4.18) hold for any (linear combination of) Hermite polynomial Hi(x) with
i¿ 3. This is the main result of our paper.

Proposition 4.3. Consider ut as de1ned in Example 1, 2 or 3. Let )̂T be a square-root
T consistent estimator of ) 0 such that (4.3) applies. Let g be a vectorial function
such that any component is a linear combination of Hermite polynomials Hi(x) with
i¿ 3. Then, the asymptotic distribution of the test statistics T−1=2 ∑T

t=1 g(zt ; ) 0) and
T−1=2 ∑T

t=1 g(zt ; )̂T ) coincides.

This result was already stated in Kiefer and Salmon (1983). However, these authors
assumed that the model is a nonlinear regression with homoskedastic and i.i.d. errors,
that is under (4.8) and (4.10). Moreover, they found this result when )̂T is the maxi-
mum likelihood estimator. In other words, both assumptions are relaxed in the previous
proposition. This is very important in many empirical examples where computing the
maximum likelihood estimator is diPcult or unfeasible.
We now characterize the relationship of the Jarque and Bera (1980) test with the

previous proposition. The test statistic they proposed is, for example, one under (4.9).
More precisely, let û t de8ned by û t = (yt − x�

t /̂)=.̂, where .̂ and /̂ are the MLE of
. and /. Then, Jarque and Bera (1980) found that

JB ≡ 1
6

(
1√
T

T∑
t=1

û3t

)2
+

1
24

(
1√
T

T∑
t=1

[û4t − 3]

)2
n→+∞−→ !2(2): (4.19)
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Jarque and Bera (1980), the constant is in the regressors and .̂2 is given by
.̂2 = T−1 ∑T

t=1 (yt − x�
t /̂)2. Therefore,

∑T
t=1 û t = 0 and T−1 ∑T

t=1 û2t = 1, and the
JB test-statistic (4.19) becomes

JB=
1
6

(
1√
T

T∑
t=1

[û3t − 3û t]

)2
+

1
24

(
1√
T

T∑
t=1

[û4t − 6û2t + 3]

)2

=

(
1√
T

T∑
t=1

H3(û t)

)2
+

(
1√
T

T∑
t=1

H4(û t)

)2
:

In other words, the Jarque and Bera (1980) test coincides with the joint test based
on third and fourth Hermite polynomials. However, the setting they considered is less
general than ours. In addition, their estimation method is the ML while in our case we
only need a square-root T consistent estimator.
In summary, when one wants to test normality, N(0; 1), through skewness and ex-

cess kurtosis, one has two methods that are robust against parameter uncertainty. 13 One
can either use the third and fourth Hermite polynomials on the 8tted residuals what-
ever the estimation method, or, use the Jarque and Bera (1980) test on the standardized
residuals, i.e., the 8tted residuals minus their empirical mean divided by their standard
deviation. 14 Note that these two methods are suPcient only. For instance, Fiorentini
et al. (2003b) established that for some heteroskedastic models (like GARCH) esti-
mated by the ML method, the Jarque and Bera (1980) test statistic is still valid.

4.3. The OPG regression approach

Another approach to handle the parameter uncertainty problem is the use of
outer-product-of-the-gradient (OPG) regressions. Indeed, Davidson and MacKinnon
(1993) considered the OPG regression approach for testing normality through skewness
and excess kurtosis.
More precisely, as in Davidson and MacKinnon (1993), assume that one is interested

in testing that yt isN(/; �2) where �2 is a known parameter and de8ne xt by xt=yt−/.
The assumption that the mean and variance of xt are zero and �2 could be tested by
the following OPG regression:

1 = s1xt + s2(x2t − �2) + residual: (4.20)

Assume now that one is interested in testing skewness. Then, Davidson and MacKinnon
(1993) propose to add in (4.20) the regressor x3t , i.e.,

1 = s1xt + s2(x2t − �2) + ax3t + residual

and to test that the coePcient a is zero. The test statistic being the t statistic of the
estimator of a. Given that x3t is orthogonal with x2t −�2 and not with xt , the numerator

13 Tests based on OPG regression is a third robust method; see the following subsection.
14 Of course, for time series, the second method is not valid while one has to use a HAC method for

estimating the variance–covariance matrix in the 8rst method.
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of the t test is the mean of x3t minus the mean of its projection on xt , i.e.,

1
T

T∑
t=1

x3t −
(∑T

t=1 x4t∑T
t=1 x2t

)
1
T

T∑
t=1

xt ≈ 1
T

T∑
t=1

x3t − 3�2
1
T

T∑
t=1

xt ;

where the last approximation holds under normality and when T is large. Davidson
and MacKinnon (1993) show the variance of x3t − 3�2xt is 6�6. Thus, the t statistic is
close to

(1=T )
∑T

t=1 x3t − 3�2(1=T )
∑T

t=1 xt√
6�6

=
1
T

T∑
t=1

H3(xt=�): (4.21)

Given that the variance of H3(xt=�) is 1, the test statistic (4.21) is also the t statistic
of the coePcient ã in the two OPG regressions

1 = s1xt + s2(x2t − �2) + ãH3(xt=�) + residual

and

1 = s̃1H1(xt=�) + s̃2H2(xt=�) + ãH3(xt=�) + residual:

Therefore, testing that the empirical mean of the third Hermite polynomial is numer-
ically the same as testing that the coePcient ã in the previous regressions is zero if
one takes into account the orthonormality of the Hermite polynomials (in particular,
the unit variance of the Hermite polynomials). When one ignores this orthonormality,
one gets an asymptotic equivalence.
Similarly, one easily obtains the same results when one tests excess kurtosis by using

the fourth Hermite polynomial. In addition, the orthogonality between the third and
fourth Hermite polynomials implies that the same result holds when one tests jointly
the skewness and excess kurtosis through the third and fourth Hermite polynomials.
More generally, the orthonormality of the Hermite polynomials means that the result
holds for any and higher-order Hermite polynomials; for more details, see the previous
version, Bontemps and Meddahi (2002).

5. A Monte Carlo study

This section provides some Monte Carlo experiments to study the 8nite sample
properties of the tests we proposed. We also compare our tests with the more popular
ones, that is the Kolmogorov–Smirnov, Jarque–Bera and OPG-type tests. The 8rst two
tests are, respectively, denoted by KS and JB in the tables. Note that when we consider
the parameter uncertainty problem, we also provide the Lilliefors-modi8ed Kolmogorov
–Smirnov test and denote these by M-KS in the tables.
All the test functions we consider are based on Hermite polynomials given their

generality (Proposition 2.1) and their robustness against parameter uncertainty. We
consider test functions based on individual Hermite polynomials Hi for i = 3; : : : ; 10.
We also consider joint tests based on (H3; H4; : : : ; Hi), for i=4; : : : ; 10. These tests are
denoted by H3−i for i = 4; : : : ; 10 in the tables.
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In all the simulation experiments, we consider four sample sizes: 100, 250, 500 and
1000. All the results are based on 50 000 replications. We report in the tables the
empirical probability of rejecting the null hypothesis when one considers tests at 5%
signi8cance level. Tests based on 10%, 2.5% and 1% produce similar results to that
based on 5% and are omitted to save space. 15

5.1. Cross-sectional case

We start by simulating an i.i.d. sample from an N(0; 1). We assume that we know
the mean and the variance. Obviously, this is unrealistic in practice. However, it is a
good benchmark for the realistic cases where the parameters are unknown and have
to be estimated. We report the results in Panel A of Table 1. Consider the tests based
on individual Hermite polynomials. Their 8nite sample properties are clearly good. In
particular, they do not reject the null more than the nominal level, even with the smaller
sample size. However, while the tests based on higher-order polynomials Hi for i¿ 6
underreject the null for the four sample sizes, this is not problematic given that we are
considering the level of the tests. The tests based on several Hermite polynomials also
have very good 8nite sample properties for the four sample sizes. Indeed, we do not
observe the underrejection when we use high-order Hermite polynomials.
Consider now the popular tests, i.e., KS and JB. The KS test works very well

whatever the sample size. Interestingly, the properties of tests based on the Hermite
polynomials are very close to the KS test and occasionally better for the sample size
100 when one considers a test based on H4. However the JB test, denoted Naive-JB,
does not work well and overreject the null. The main reason is that, when the empirical
mean of the sample is not zero, the asymptotic distribution of the Jarque and Bera
(1980) test is not a !2(2) (which justi8es the terminology Naive-JB).
In Panel B of Table 1, we present the results of the same tests 16 on the same

samples when one does not know the mean and the variance and estimates them.
Thus, the test statistics are based on the standardized residuals. By comparing Panel B
with Panel A, it is clear that tests based on Hermite polynomials underreject a little bit
the null assumption which again is not problematic. However, the di;erence between
knowing or not knowing the mean and the variance, decreases with the sample size and
almost vanishes when the sample size is 1000. This con8rms the robustness of these
tests against parameter uncertainty. This is in contrast with the Kolmogorov–Smirnov
test that almost never rejects the null. However, the Lilliefors-modi8ed test works well
whatever the sample size. This is also the case for the JB test, since by construction,
the empirical mean of the standardized residuals is zero. Indeed, the JB test coincides
with the joint test based on H3 and H4, that is H3–4. 17

We also provide in Panel B results based on OPG regression as discussed in the
previous section. For simplicity, we present three tests that correspond to the hypothesis

15 They are available upon request from the authors.
16 We do not consider H1 and H2 since these moments are used to estimate the mean and the variance.
17 There is a small di;erence in Panel B between the JB and H3–4 tests since in JB test, the variance is

estimated by T−1 ∑T
t=1 (xt − UX )2 while in the Hermite case it is estimated by (T − 1)−1 ∑T

t=1 (xt − UX )2

where T is the sample size and UX the empirical mean.
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Table 1
Size of the tests

T
100 250 500 1000

Panel A: Mean and variance are known
H1 5.1 5.1 5.2 5.0
H2 5.1 4.8 5.0 4.9
H3 5.5 5.4 5.6 5.2
H4 4.8 4.7 4.9 5.0
H5 3.6 4.3 4.8 5.0
H6 2.0 2.7 3.2 3.6
H7 1.3 1.6 2.0 2.4
H8 1.4 1.2 1.3 1.4
H9 1.9 1.7 1.4 1.3
H10 1.2 1.6 1.8 1.6
H3–4 5.8 5.6 5.7 5.3
H3–5 6.0 6.2 6.3 6.0
H3–6 5.4 5.8 6.1 6.1
H3–7 5.0 5.2 5.5 5.6
H3–8 5.0 5.0 5.1 5.1
H3–9 4.8 4.9 5.0 4.9
H3–10 4.5 4.6 4.8 4.7
KS 4.5 4.7 4.9 4.9
Naive-JB 15.0 16.3 17.4 17.4

Panel B: Mean and variance are estimated
H3 4.3 4.8 4.9 5.0
H4 3.1 3.8 4.3 4.6
H5 2.4 3.6 4.3 4.8
H6 1.2 2.1 2.9 3.4
H7 0.7 1.2 1.7 2.2
H8 0.8 0.9 1.0 1.3
H9 1.2 1.4 1.1 1.1
H10 0.6 1.3 1.7 1.5
H3–4 4.1 4.5 4.6 4.8
H3–5 4.2 5.1 5.3 5.4
H3–6 3.6 4.7 5.3 5.5
H3–7 3.3 4.2 4.7 5.1
H3–8 3.2 4.0 4.3 4.6
H3–9 3.1 3.9 4.2 4.4
H3–10 2.8 3.7 4.1 4.3
KS 0.0 0.0 0.0 0.0
JB 4.3 4.7 4.7 4.8
M-KS 5.2 5.4 5.7 6.0
OPG3 24.9 16.2 11.9 9.2
OPG4 33.6 21.4 15.6 11.6
OPG3–4 31.5 20.1 14.5 10.9

Note: The data are i.i.d. from anN(0; 1) distribution. We tested the normality assumption. Either the mean
and variance are not estimated (Panel A), or they are estimated (Panel B). The results are based on 50 000
replications. For each sample size, we provided the percentage of rejection at a 5% level. Hi–j corresponds
to the joint test based on Hk , i6 k6 j. KS and JB are the Kolmogorov–Smirnov and Jarque–Bera tests;
the Naive-JB statistic equals the JB statistic, but is not valid when the residuals are not standardized. M-KS
is the modi8ed Kolmogorov–Smirnov test. OPG3, OPG4 and OPG3–4 are the results of a normality test
based on an OPG regression and testing, respectively, the third, fourth moments and both.
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E[H3(x)]=0, E[H4(x)]=0, and E[H3(x)]=E[H4(x)]=0, which are, respectively, denoted
OPG3, OPG4, and OPG3–4. The main conclusion from the results in Table 1 is that
tests based on OPG regression present some important distortions which remain with
large sample sizes like 1000 observations. For instance, the probability of rejection of
OPG3–4 are 31.5% and 10.9% with 100 and 1000 observations, respectively. These
distortions are in line with ones reported by Davidson and MacKinnon (1992) when
they considered information matrix-based tests. Due to these distortions, we will not
consider OPG tests in the rest of the paper. 18

We now study the power of the considered tests against some interesting alter-
native assumptions for the cross-sectional case. In particular, we consider Student,
chi-square and exponential alternatives. We start by simulating i.i.d. random variables
from Student distributions with 8ve di;erent degrees of freedom: (a) T (60); (b) T (30);
(c) T (20); (d) T (10); and (e) T (6). Recall that for a random variable that follows a
T (8) distribution, the moments of order higher than 8 − 1 are not de8ned. Hence, the
moments of Hi are not de8ned if i¿ 8−1. Moreover, the asymptotic distribution of the
corresponding test statistics are not chi-square if 2i¿ 8 − 1 since the variance of the
Hermite polynomial Hi is not de8ned. The results are presented in Table 2. It is clear
that the power of the tests is low when the degree of freedom 8 is high. This is not sur-
prising since a T (8) distribution tends toward a normal one when 8 → +∞. However,
when the degree of freedom decreases, the power of the tests increases and becomes
very good when the degree of freedom is smaller than 10, which is the relevant case
in the volatility literature (see the 8rst example in the empirical section). A surprising
result is that the fourth Hermite polynomial captures much more the non-normality
than the higher polynomials. In contrast, tests based on odd polynomials do not work
well. This is not surprising given that the mean in population of any odd Hermite
polynomial is zero (when it is well de8ned) for any symmetric distribution and, hence,
for a Student one.
In order to understand the behavior of the power of test statistics against Student

distributions, we characterize in the appendix the behavior of those based on the third
and fourth Hermite polynomials. In particular, we show that if one observes an i.i.d.
sample y1; : : : ; yT , of a random variable Y that follows a T (8) where 8¿ 8, then(

1√
T

T∑
t=1

H3(xt)

)2
T→+∞−→ A(8)!2(1) and

(
1√
T

T∑
t=1

H4(xt)

)2
T→+∞−→ +∞; (5.1)

where xt=yt

√
(8 − 2)8−1 and A(8)=(82−8+10)=(8−6)(8−4). The 8rst result in (5.1)

implies that when one uses the third Hermite polynomial for testing normality while
the random variable is a Student T (8) at, say, 5% level, one accepts normality with a

18 We also do not consider tests based on double-length arti8cial linear regressions (Davidson and
MacKinnon, 1984) which have better 8nite sample properties than tests based on OPG regression; see
MacKinnon and Magee (1990).
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Table 2
Power of the tests against student distributions

8 T H3 H4 H5 H6 H3–4 H3–5 H3–6 KS M-KS JB

60 100 5.7 4.9 3.7 2.1 6.3 6.4 5.7 0.0 0.0 6.6
250 6.5 7.3 6.1 3.9 8.4 9.1 8.6 0.0 0.0 8.5
500 6.8 9.5 7.8 5.5 10.0 11.3 10.8 0.0 0.0 10.2
1000 6.8 13.0 9.5 7.4 12.6 14.0 13.9 0.0 0.0 12.6

30 100 7.4 7.8 5.6 3.3 9.3 9.4 8.6 0.0 0.0 9.7
250 8.6 13.3 9.8 6.6 14.0 14.9 14.1 0.0 0.0 14.3
500 9.0 19.4 12.9 9.9 19.1 20.5 19.7 0.0 0.0 19.3
1000 9.4 30.3 16.4 13.7 28.0 29.4 28.7 0.0 0.0 28.1

20 100 9.6 11.2 7.7 4.9 12.9 12.8 11.9 0.0 0.0 13.4
250 11.7 21.1 14.2 10.3 21.5 22.3 21.3 0.1 0.0 21.8
500 12.3 34.2 19.8 15.8 32.6 33.5 32.3 0.1 0.0 32.8
1000 13.0 54.0 25.3 22.7 50.0 50.0 48.8 0.1 0.0 50.1

10 100 18.1 26.8 17.1 12.4 28.1 27.5 26.5 0.1 0.0 28.8
250 23.1 52.3 31.6 26.2 51.2 50.6 49.9 0.2 0.0 51.6
500 25.6 77.5 43.7 40.2 74.5 73.5 72.9 0.5 0.0 74.7
1000 27.8 95.6 54.5 56.6 94.1 93.2 93.1 2.1 0.0 94.1

6 100 31.4 50.6 33.2 27.1 51.2 50.1 49.5 1.1 0.0 51.9
250 40.8 84.5 56.4 52.2 83.0 81.8 82.0 3.4 0.0 83.2
500 46.5 98.0 71.4 72.8 97.4 97.0 97.1 11.5 0.0 97.4
1000 51.8 100.0 82.2 89.4 100.0 100.0 100.0 41.7 0.0 100.0

Note: The data are i.i.d. from a T (8) distribution. We test the normality assumption. Thus, we estimated
the mean and variance. The results are based on 50 000 replications. For each sample size, we provided the
percentage of rejection at a 5% level. Hi–j is the joint test based on Hk , i6 k6 j. KS, M-KS and JB are
the Kolmogorov–Smirnov, modi8ed KS and Jarque–Bera tests.

Table 3
Probability of rejection for student distributions

8 A(8) P(A(8)!2(1)¿ 3:84)

60 1.17 0.071
30 1.41 0.099
20 1.74 0.137
10 4.16 0.337
6 — 1

probability that equals P(A(8)!2(1)¿ 3:84) if one assumes that the limit distribution
of (T−1=2 ∑T

t=1 H3(xt))2 is !2(1).
In Table 3, we provided for all values of 8 we considered in the Monte Carlo

experiment, the value of A(8) and the probability P(A(8)!2(1)¿ 3:84). These results
are compatible with the Monte Carlo ones; in particular, the theoretical probabilities of
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Table 4
Power of the tests against asymmetric distributions

T H3 H4 H5 H6 H3–4 H3–5 H3–6 KS M-KS JB

!2(1) 100 100.0 98.9 84.2 82.1 100.0 100.0 100.0 100.0 100.0 100.0
250 100.0 100.0 97.8 98.6 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

exp(1) 100 100.0 89.6 70.0 61.6 100.0 100.0 100.0 91.9 100.0 100.0
250 100.0 99.8 87.5 90.9 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 97.0 99.1 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: The data are i.i.d. from a !2(1) and exp(1) distributions. We tested the normality assumption. Thus,
we estimated the mean and variance. The results are based on 50 000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. Hi–j is the joint test based on Hk , i6 k6 j. KS, M-KS
and JB are the Kolmogorov–Smirnov, modi8ed KS and Jarque–Bera tests.

rejection are very close to the Monte Carlo ones for the sample size T = 1000. Given
that a test based on the third Hermite polynomial is not powerful, this is also the
case for any joint test that uses this polynomial. In contrast, the second result in (5.1)
explains why a test based on the fourth Hermite polynomial has a good asymptotic
power against Student distribution.
Observe that we do not report results based on Hermite polynomials Hi(·) with i¿ 7

in Table 2 and the subsequent tables of the paper, because they do not provide gain
in power with respect to tests based on Hermite polynomials with lower order like the
test denoted by H3–6 in the tables; these simulations are however reported in Bontemps
and Meddahi (2002).
Consider now the power of the tests against a !2(1) and an exponential distribution,

exp(1). The results are reported in Table 4. They clearly imply that tests based on the
third and fourth Hermite polynomials are very powerful whatever the sample size and
that they are similar to the modi8ed Kolmogorov–Smirnov test. However, tests based
on individual higher-order Hermite polynomials are less powerful for small sample
sizes.
Similarly, we study the power of our tests against heteroskedastic and Gaussian

errors. We follow Bera and Jarque (1981) by considering the model xt ∼ N(0; �2t )
with �2t =25+ .zt and

√
zt ∼ N(10; 25). We simulate two examples, namely .=0:25

and .=1:25, which, respectively, correspond to a weak and strong heterogeneity. The
results reported in Table 5 indicate that our tests work well and these results are in line
with those reported in Table 3 when we study the power of the tests against Student
distributions.
The last i.i.d. example we consider is a GARCH(1,1) model

xt = � +
√

htut ; ht = !+ .(
√

ht−1ut−1)2 + /ht−1;

where �=0, !=0:2, .=0:1, and /=0:8. We take di;erent distributions for ut :N(0; 1)
to study the size of the tests, and standardized T (20), T (10), T (6), !2(1), and exp(1)



C. Bontemps, N. Meddahi / Journal of Econometrics 124 (2005) 149–186 171

Table 5
Power of the tests against heteroskedastic and Gaussian errors

. T H3 H4 H5 H6 H3–4 H3–5 H3–6 KS M-KS JB

0.25 100 49.8 89.7 55.5 56.4 88.8 87.1 90.3 15.5 79.2 89.3
250 56.5 99.9 77.6 79.1 99.8 99.8 99.9 69.2 99.3 99.8
500 60.6 100.0 86.2 91.8 100.0 100.0 100.0 98.9 100.0 100.0
1000 62.7 100.0 90.5 98.6 100.0 100.0 100.0 100.0 100.0 100.0

1.25 100 55.0 96.0 62.8 68.3 95.3 94.2 97.1 47.5 96.7 95.5
250 61.7 100.0 82.2 84.8 100.0 100.0 100.0 98.3 100.0 100.0
500 64.6 100.0 89.3 94.9 100.0 100.0 100.0 100.0 100.0 100.0
1000 66.9 100.0 92.4 99.3 100.0 100.0 100.0 100.0 100.0 100.0

Note: We considered heteroscedasticity: xt ∼ N(0; �2t ) with �2t = 25 + .zt and
√

zt ∼ N(10; 25). Two
cases are treated: weak heterogeneity (. = 0:25) and strong heterogeneity (. = 1:25). These simulations are
the same as in Bera and Jarque (1981). We tested the normality assumption. The results are based on 50 000
replications. For each sample size, we provided the percentage of rejection at a 5% level. The notations Hi–j ,
KS, M-KS and JB are de8ned in Table 3.

to study the power of the tests. The parameters �, !, ., and / are estimated with a
Gaussian-QMLE method, which is consistent for all models given that we correctly
specify the conditional mean and variance of xt (Bollerslev and Wooldridge, 1992).
The results reported in Table 6 con8rm those reported in the other tables.
We did not adjust for small sample size distortions of the tests we considered. This

obviously makes the power comparison less clear. The main reason for not adjusting
the size is that our approach is semiparametric because our testing approach does not
specify the complete model. And, we follow the same approach in the simulation even
if we completely know the model. Of course, one can use the Bootstrap to do this
correction, like the parametric bootstrap when one considers a linear regression model
with 8xed regressors. It is less clear if one can use it for the GARCH models and
more importantly in the case where the variable of interest is serially correlated.

5.2. Dependent case

Consider now the dependent case, where the variable of interest is serially correlated.
We consider several autoregressive normal processes of order one, AR(1), i.e., we
assume that the conditional distribution of the variable of interest denoted by xt given
its past is N(;xt−1; 1 − ;2). Observe that the marginal distribution of xt is N(0; 1).
We consider four values for ;: (a) ;= 0:1; (b) ;= 0:5; (c) ;= 0:7 and (d) ;= 0:9.
We did the same tests as for the independent case by assuming that we do not know
the unconditional mean and variance of xt .
We start by ignoring the dependence of the data, that is we assume that the sample

size is i.i.d.; the results are reported in Table 7a. They clearly state that all the tests,
including M-KS and JB ones, overreject the null when the sample size is higher than
250. This distortion is problematic. Therefore, we take into account the dependence of
the data.
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Table 6
Size and power of the tests with GARCH(1,1) errors

T H3 H4 H5 H6 H3–4 H3–5 H3–6 KS M-KS JB

ut ∼ N(0; 1) 100 4.5 3.0 2.5 1.3 4.0 4.2 3.7 0.0 7.0 3.7
250 4.5 3.5 3.3 2.1 4.0 4.6 4.3 0.0 7.7 4.3
500 4.7 4.1 4.1 2.6 4.3 5.0 4.7 0.0 7.8 4.9
1000 4.9 4.5 4.5 3.2 4.5 5.0 5.1 0.0 7.8 5.1

ut ∼ T (20) 100 8.6 9.7 6.9 4.4 11.1 11.4 10.5 0.1 8.2 10.9
250 10.4 17.6 12.2 8.5 18.4 19.2 18.1 0.1 11.1 19.0
500 11.3 29.6 17.6 13.7 28.6 29.6 28.5 0.1 13.9 29.7
1000 12.6 51.0 23.8 21.1 47.1 47.0 46.1 0.2 19.4 48.1

ut ∼ T (10) 100 15.4 22.4 14.6 10.5 23.9 23.7 22.9 0.3 13.5 23.8
250 20.0 45.8 27.3 22.1 44.8 44.4 43.5 0.5 22.5 45.9
500 23.7 73.7 40.1 36.7 70.7 69.6 68.9 1.2 36.3 71.9
1000 26.4 94.9 52.6 53.9 93.1 92.1 92.0 4.0 60.0 93.4

ut ∼ T (6) 100 26.9 43.5 28.0 22.9 44.3 43.4 43.1 1.7 25.6 43.9
250 39.4 82.1 54.2 50.8 80.7 79.5 79.9 4.6 49.0 80.9
500 47.5 97.9 72.2 73.8 97.3 96.8 97.0 11.8 72.7 97.2
1000 53.5 100.0 83.2 90.9 100.0 100.0 100.0 33.2 93.0 100.0

ut ∼ !2(1) 100 100.0 98.4 80.7 77.6 100.0 100.0 100.0 99.9 100.0 100.0
250 100.0 100.0 96.6 97.6 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ut ∼ exp(1) 100 100.0 86.0 67.0 56.1 100.0 100.0 100.0 81.2 99.9 100.0
250 100.0 99.7 84.3 87.7 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 95.7 98.7 100.0 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: The data follow a GARCH(1,1) process: xt =�+
√

htut with ht =!+ .(
√

ht−1ut−1)2 +/ht−1 and
� = 0, ! = 0:2, . = 0:1, / = 0:8. ut follows a normal, student, exponential or chi-square distribution up to
some aPne transformation which guarantees that Eut = 0 and Vut = 1. �, !, . and / are estimated with a
QMLE method. We tested the normality assumption. The results are based on 50 000 replications. For each
sample size, we provided the percentage of rejection at a 5% level. The notations Hi–j , KS, M-KS and JB
are de8ned in Table 3.

Next, we assume that we know the autoregressive structure. This is not always a
realistic assumption. We do it however in order to get a benchmark. We consider two
cases; in the 8rst one, we assume that we know the autoregressive parameter while
we estimate it by OLS in the second case. Given that the autoregressive feature of the
data is known, we assume that the weighting matrix that appears in the test statistic is
diagonal and that the diagonal coePcients are given by (3.11). The results are provided
in Tables 7b and c. These results are clearly good and similar to the ones provided in
Panel B of Table 1 for the independent case. We observe again an underrejection of
normality, in particular when the autoregressive coePcient increases.
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Table 7
Size of the tests under serial correlation

; T H3 H4 H5 H6 H3–4 H3–5 H3–6 KS M-KS JB

(a) Correlation that is ignored a

0.1 100 4.2 3.0 2.3 1.2 3.9 4.1 3.6 0.0 0.0 4.1
250 4.7 3.9 3.5 2.1 4.6 5.2 4.7 0.0 0.0 4.7
500 4.8 4.2 4.2 2.8 4.5 5.3 5.2 0.0 0.0 4.6
1000 5.0 4.5 4.8 3.5 4.7 5.4 5.5 0.0 0.0 4.8

0.5 100 5.9 2.7 2.0 0.9 4.7 4.5 3.9 0.0 0.0 4.9
250 7.3 4.2 3.4 1.9 6.1 6.2 5.5 0.0 0.0 6.2
500 7.7 5.0 4.3 2.6 6.9 7.0 6.5 0.0 0.0 7.0
1000 8.1 5.7 4.9 3.3 7.5 7.5 7.1 0.0 0.0 7.5

0.7 100 9.7 3.0 2.3 1.2 6.6 6.9 5.8 0.1 0.0 6.9
250 13.5 5.9 3.7 2.0 10.7 10.4 9.1 0.1 0.0 10.9
500 15.0 8.5 5.3 3.0 14.0 13.1 11.6 0.2 0.0 14.1
1000 16.1 9.9 6.5 3.9 15.9 14.9 13.5 0.2 0.0 16.0

0.9 100 19.2 7.9 11.3 6.7 15.2 19.8 21.2 3.1 0.0 16.2
250 30.1 19.6 13.7 9.6 34.0 33.5 34.2 5.1 0.0 34.6
500 35.9 26.2 16.0 11.1 44.2 42.1 41.7 6.1 0.0 44.6
1000 39.1 30.3 17.9 12.7 49.8 48.2 46.9 6.3 0.0 50.0

(b) Correlation is known and taken into account, ; is knownb

0.1 100 4.1 3.0 2.3 1.2 3.9 4.1 3.5
250 4.6 3.9 3.5 2.1 4.5 5.2 4.7
500 4.8 4.2 4.2 2.8 4.5 5.3 5.2
1000 5.0 4.5 4.8 3.5 4.7 5.4 5.5

0.5 100 3.5 2.2 1.7 0.9 3.1 3.2 2.8
250 4.3 3.3 3.1 1.8 4.0 4.5 4.0
500 4.6 3.6 3.8 2.6 4.2 4.8 4.8
1000 4.8 4.3 4.5 3.4 4.7 5.3 5.4

0.7 100 2.6 1.4 1.0 0.5 2.4 2.2 1.8
250 3.9 2.6 2.1 1.3 3.5 3.6 3.3
500 4.2 3.5 3.1 2.0 4.0 4.4 4.2
1000 4.4 3.6 3.9 2.7 4.1 4.7 4.5

0.9 100 0.9 0.4 0.3 0.1 0.8 0.7 0.6
250 2.1 1.1 0.7 0.4 1.9 1.7 1.4
500 3.2 1.9 1.4 0.8 3.0 2.9 2.5
1000 4.0 2.6 2.2 1.3 3.7 3.8 3.4

(c) Correlation known and taken into account, ; is estimated c

0.1 100 4.1 3.0 2.3 1.2 3.9 4.1 3.6
250 4.6 3.9 3.5 2.1 4.6 5.2 4.7
500 4.8 4.2 4.2 2.8 4.5 5.3 5.2
1000 5.0 4.5 4.8 3.5 4.7 5.4 5.5

0.5 100 3.4 2.2 1.7 0.9 3.1 3.2 2.8
250 4.3 3.3 3.1 1.8 4.0 4.4 4.1
500 4.6 3.6 3.8 2.6 4.2 4.9 4.7
1000 4.8 4.3 4.5 3.3 4.7 5.3 5.4
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Table 7 (continued)

; T H3 H4 H5 H6 H3–4 H3–5 H3–6 KS M-KS JB

0.7 100 2.4 1.3 1.0 0.5 2.0 2.0 1.7
250 3.8 2.4 2.0 1.3 3.4 3.6 3.2
500 4.1 3.4 3.0 2.0 3.8 4.3 4.1
1000 4.4 3.6 3.9 2.7 4.0 4.7 4.6

0.9 100 0.2 0.2 0.2 0.1 0.3 0.3 0.2
250 1.6 0.9 0.6 0.3 1.4 1.4 1.1
500 2.9 1.7 1.3 0.8 2.7 2.7 2.3
1000 3.8 2.6 2.1 1.3 3.5 3.7 3.3

(d) Correlation is unknown; � is estimated by a HAC procedured

0.1 100 3.4 5.6 4.0 4.4 4.2 1.9 1.6
250 4.2 7.6 4.1 4.2 8.2 6.4 3.6
500 4.6 7.5 4.2 4.6 8.9 10.2 13.6
1000 4.8 6.9 4.2 5.0 8.2 10.9 22.2

0.5 100 3.3 3.9 4.2 4.5 2.8 1.4 1.3
250 4.2 6.7 4.3 4.4 7.0 4.2 2.3
500 4.6 7.3 4.3 4.6 8.8 8.0 6.5
1000 5.0 7.1 4.3 4.7 8.8 10.2 16.0

0.7 100 2.9 2.3 4.8 5.3 1.5 1.1 1.3
250 4.0 5.1 4.8 4.8 4.6 2.4 1.8
500 4.4 7.1 4.7 4.6 7.7 4.8 2.8
1000 4.8 7.5 4.6 4.7 8.7 7.8 6.6

0.9 100 1.6 0.7 4.5 4.9 0.5 0.5 0.4
250 2.6 1.8 5.0 6.4 1.2 0.9 1.3
500 3.5 3.8 5.2 5.8 2.8 1.5 1.6
1000 4.0 6.1 5.0 5.2 5.7 2.8 1.9

aThe data follow an AR(1) process: xt | xt−1 ∼ N(;xt−1; 1 − ;2). We tested the normality assumption.
We did not take into account the serial correlation in the tests. The results are based on 50 000 replications.
For each sample size, we provided the percentage of rejection at a 5% level. The notations Hi–j , KS, M-KS
and JB are de8ned in Table 5.

bThe data follow an AR(1) process: xt | xt−1 ∼ N(;xt−1; 1 − ;2). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumed that we knew the AR(1) dynamics
and that we knew ;. The results are based on 50 000 replications. For each sample size, we provided the
percentage of rejection at a 5% level. The notations Hi–j are de8ned in Table 5.

cThe data follow an AR(1) process: xt | xt−1 ∼ N(;xt−1; 1 − ;2). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumed that we knew the AR(1) dynamics but
not ; which is estimated by OLS. The results are based on 50 000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi–j are de8ned in Table 5.

dThe data follow an AR(1) process: xt | xt−1 ∼ N(;xt−1; 1 − ;2). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumed that we did not know the AR(1)
dynamics. We used a HAC method. The results are based on 50 000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi–j are de8ned in Table 5.

We then test normality by ignoring the autoregressive feature of the data but by
taking into account their dependence. Therefore, we do not assume that the weighting
matrix � is diagonal. Instead, we estimate it by a HAC method. The HAC method is
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developed by using the quadratic kernel with an automatic lag selection procedure of
Andrews (1991). The results are reported in Table 7d. From this table, it is clear that
univariate tests work well. However, joint tests overreject the normality assumption,
especially for small sample sizes and for tests that are based on three or more Hermite
polynomials. The overrejection is relatively small for the test based on the third and
fourth Hermite polynomials.
We now study the power of these tests against an autoregressive model of order 1

where the innovation is a Student one. Again, with the same autoregressive parameters
as previously used, we consider almost the same degree of freedom as in the i.i.d. case,
i.e., 30, 20, 10, and 5. We consider the T (5) example for comparison purposes with Bai
and Ng (2002). Observe that the marginal distribution of the processes are (probably)
not Student. However, their tails are clearly fatter than for a normal distribution. The
results are reported in Tables 8a–d. The main results of the tables can be summarized
as follows. The tests based on univariate polynomials and di;erent from the third one
work well; however, their power decreases when both the degree of freedom of the
Student distribution and the autocorrelation parameter are high. The univariate, bivariate
and trivariate tests based on the third Hermite polynomial (denoted in the tables by
H3, H3–4 and H3–5) are not powerful, especially when the autocorrelation is high. The
main reason is symmetry. The second reason, given by Bai and Ng (2002), is that
when the autocorrelation parameter is high, the Central Limit Theorem suggests that
process of interest is close to a normal one. Note however that our results for H3–4
are di;erent from ones of Bai and Ng (2002) when they test normality (for 8 = 5),
which are more powerful then ours. The reason is not clear to us. One potential reason
is the di;erence in the estimation method: in order to estimate the mean and variance
parameters, we use the 8rst two moments while Bai and Ng (2002) used the 8rst four
moments.

6. Empirical examples

This section provides two empirical examples: the 8rst one concerns GARCH models
while the second one deal with high-frequency-realized volatility.

6.1. First example: GARCH model

A very popular model in the volatility literature is GARCH(1,1) in Bollerslev (1986).
More precisely, Bollerslev (1986) generalizes the ARCH models of Engle (1982) by
assuming that

yt =
√

htut with ht = !+ .y2t−1 + /ht−1;

where !¿ 0; .¿ 0; /¿ 0; .+ /¡ 1 (6.1)

and the process ut is assumed to be i.i.d. and N(0; 1). An important characteristic
of GARCH models is that the kurtosis of yt is higher than for a normal variable. It
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Table 8
Power of the tests under serial correlation against (a) T (30), (b) T (20), (c) T (30) and (d) T (5) innovations

; T H3 H4 H5 H6 H3–4 H3–5 H3–6

(a) T (30) innovations
0.1 100 5.0 82.2 84.1 82.8 5.8 0.5 76.7

250 14.0 86.9 85.3 86.2 9.4 1.1 79.5
500 20.6 91.8 85.9 89.6 12.9 3.6 79.3
1000 24.6 94.9 78.5 82.3 7.6 8.9 56.3

0.5 100 1.6 88.1 89.8 89.3 2.5 0.2 84.6
250 5.1 90.1 90.7 91.0 4.3 0.3 87.3
500 9.3 91.8 90.8 92.1 6.6 0.7 87.6
1000 16.1 85.1 66.1 71.0 8.8 7.3 41.3

0.7 100 0.4 91.2 92.7 92.7 1.2 0.1 86.0
250 1.3 92.7 93.7 93.8 1.7 0.2 91.5
500 3.0 93.5 94.2 94.4 2.9 0.2 92.4
1000 7.0 63.4 50.8 52.4 8.5 5.9 24.2

0.9 100 0.0 0.7 0.4 1.5 0.8 0.0 0.2
250 0.1 96.7 97.3 97.4 0.3 0.0 92.4
500 0.1 97.2 97.7 97.7 0.4 0.0 96.7
1000 0.4 4.7 4.9 6.1 9.4 1.6 2.2

(b) T (20) innovations
0.1 100 7.9 79.1 79.8 78.8 8.1 0.7 69.6

250 19.6 87.6 81.8 84.8 11.6 2.6 72.5
500 27.7 94.9 84.0 90.5 15.2 9.0 73.4
1000 37.3 99.3 87.0 96.2 21.3 23.3 75.8

0.5 100 2.6 85.1 87.0 86.4 3.7 0.3 79.4
250 7.8 89.0 88.7 89.6 5.8 0.5 83.7
500 13.2 92.4 88.8 91.6 8.4 1.9 83.5
1000 18.3 96.8 89.7 94.7 11.5 6.6 83.7

0.7 100 0.7 88.7 90.5 90.5 1.7 0.1 80.5
250 2.3 91.1 92.3 92.4 2.7 0.2 89.0
500 5.0 92.2 92.6 93.3 4.2 0.3 90.1
1000 8.2 93.7 92.5 94.2 5.9 0.9 90.0

0.9 100 0.1 1.4 0.7 2.5 1.1 0.0 0.3
250 0.1 95.6 96.4 96.5 0.5 0.0 89.0
500 0.2 96.6 97.2 97.2 0.5 0.1 95.9
1000 0.5 96.8 97.3 97.4 0.8 0.1 96.4

(c) T (10) innovations
0.1 100 15.3 77.1 70.7 71.3 11.7 2.6 54.0

250 31.8 94.2 77.7 86.5 13.0 10.8 60.4
500 47.4 99.5 85.0 95.7 16.8 28.3 68.8
1000 62.1 100.0 92.3 99.6 23.8 47.4 80.8

0.5 100 5.8 79.8 78.9 78.9 6.1 0.9 63.5
250 15.0 90.2 81.8 87.3 8.2 3.0 69.4
500 24.0 97.1 84.5 93.5 10.8 10.4 70.8
1000 37.2 99.8 88.4 98.3 15.2 26.1 74.1
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Table 8 (continued)

; T H3 H4 H5 H6 H3–4 H3–5 H3–6

0.7 100 1.6 81.1 83.8 83.3 3.0 0.4 61.2
250 5.5 87.8 87.4 88.6 4.8 0.6 80.0
500 10.2 92.1 88.1 91.9 6.5 1.8 80.8
1000 16.0 96.9 89.1 95.4 8.7 6.1 80.7

0.9 100 0.1 3.0 2.0 4.9 2.1 0.0 0.5
250 0.2 92.8 94.1 94.3 0.8 0.1 73.1
500 0.6 94.4 95.3 95.5 1.1 0.1 92.9
1000 1.4 95.2 95.8 96.0 1.6 0.1 94.2

(d) T (5) innovations
0.1 100 22.9 85.8 67.5 71.4 11.3 7.6 44.9

250 45.7 99.5 86.7 94.0 9.3 22.3 70.6
500 61.0 100.0 96.1 99.6 8.3 36.4 89.2
1000 72.6 100.0 98.9 100.0 8.2 48.8 95.9

0.5 100 11.1 77.8 65.0 68.4 8.8 4.2 41.2
250 26.8 96.8 77.5 89.9 8.2 13.3 56.6
500 45.9 99.9 88.7 98.4 8.8 28.8 73.8
1000 64.0 100.0 95.8 100.0 10.2 44.5 88.3

0.7 100 4.0 68.0 65.4 64.9 5.8 2.1 34.1
250 11.3 88.2 74.7 84.5 6.8 4.5 54.3
500 21.6 97.3 79.6 94.3 7.4 12.6 59.3
1000 40.0 99.9 86.0 99.1 8.9 29.0 68.7

0.9 100 0.2 4.2 4.0 6.4 5.0 0.3 1.1
250 0.8 83.4 86.2 86.4 1.8 0.3 40.8
500 2.0 90.7 90.5 91.7 2.4 0.4 81.1
1000 4.3 93.7 91.2 94.3 3.1 0.7 84.6

Note: The data follow AR(1) processes: (a) xt = ;xt−1 + $t , $t ∼ T (30), (b) xt = ;xt−1 + $t , $t ∼ T (20),
(c) xt = ;xt−1 + $t , $t ∼ T (10) and (d) xt = ;xt−1 + $t , $t ∼ T (5). We tested the normality assumption. We
took into account the serial correlation in the tests. We assumed that we did not know the AR(1) dynamics.
We used a HAC method. The results are based on 50 000 replications. For each sample size, we provided
the percentage of rejection at a 5% level. The notations Hi−j are de8ned in Table 5.

turns out that 8nancial returns are also leptokurtic, and hence, GARCH models describe
8nancial data well. 19

However, some empirical studies found that the implied kurtosis of a GARCH(1,1)
is lower than empirical ones. These studies lead Bollerslev (1987) to assume that
the standardized process ut may follow a Student distribution. Under this assumption,
GARCH(1,1) 8t 8nancial returns very well. Indeed, by using a Bayesian likelihood
method, Kim et al. (1998) proved that a Student GARCH(1,1) outperforms in terms

19 The second characteristic that GARCH models share with 8nancial returns is the clustering e;ect. For a
survey on GARCH models, see for instance Bollerslev et al. (1994).
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Table 9
Testing N(0; 1) of 8tted residuals for a GARCH(1,1) model

UK–US$ FF–US$ SF–US$ Yen–US$

H3 1.9 (0.17) 1.2 (0.26) 51.0 (0.00) 17.5 (0.00)
H4 42.6 (0.00) 38.7 (0.00) 189 (0.00) 577 (0.00)
H5 9.5 (0.00) 15.5 (0.00) 590 (0.00) 3713 (0.00)
H6 46.8 (0.00) 126 (0.00) 2562 (0.00) 28553 (0.00)
H7 26.9 (0.00) 8.7 (0.00) 10 956 (0.00) 181 020 (0.00)
H8 45.9 (0.00) 8.5 (0.00) 35 135 (0.00) 945 122 (0.00)
H9 17.2 (0.00) 2.4 (0.12) 88 029 (0.00) 4 186 878 (0.00)
H10 9.1 (0.00) 42.9 (0.00) 177 511 (0.00) 15 683 206 (0.00)
H3–4 44.4 (0.00) 39.9 (0.00) 240 (0.00) 594 (0.00)
H3–5 54.1 (0.00) 55.4 (0.00) 830 (0.00) 4308 (0.00)
H3–6 100 (0.00) 182 (0.00) 3393 (0.00) 32861 (0.00)
H3–7 127 (0.00) 191 (0.00) 14349 (0.00) 213 882 (0.00)
H3–8 173 (0.00) 271 (0.00) 49485 (0.00) 1 159 004 (0.00)
H3–9 191 (0.00) 273 (0.00) 137 514 (0.00) 5 345 882 (0.00)
H3–10 200 (0.00) 316 (0.00) 315 026 (0.00) 21 029 088 (0.00)
KS 1.0 0.8 1.3 1.1
JB 44.6 (0.00) 40.1 (0.00) 240 (0.00) 597 (0.00)

Note: We tested the N(0; 1) assumption of the standardized residuals. The volatility model is a
GARCH(1,1) and is estimated by the Gaussian QML method. We reported the test statistics and their corre-
sponding p-values in parentheses. The data are daily exchange rate returns used by Harvey et al. (1994) and
Kim et al. (1998). Hi–j is the joint test based on Hk , i6 k6 j. KS and JB are the Kolmogorov–Smirnov
and Jarque–Bera tests. The critical values of the KS and M-KS (see note of Table 1) are, respectively, 1.63
and 1.031 (1%), 1.36 and 0.886 (5%), 1.22 and 0.805 (10%).

of likelihood another very popular volatility model, namely the log-normal stochastic
volatility model of Taylor (1986) popularized by Harvey et al. (1994) and Jacquier
et al. (1994).
The 8rst example we consider in our empirical study is testing normality of the

standardized residual ut . We consider the same data as Harvey et al. (1994) and Kim
et al. (1998), 20 i.e., observations of weekday close exchange rates from 1/10/81 to
28/6/85. The exchange rates are the UK pound, French franc, Swiss franc and Japanese
yen, all versus the US dollar. We estimate the model by a Gaussian QML method.
The method is consistent as soon as the variance ht is well speci8ed (Bollerslev and
Wooldridge, 1992). We get the 8tted residuals û t and test their normality. The results
are provided in Table 9. It is clear that normality of the residuals is strongly rejected by
all the tests, in particular those related to the tails (even polynomials). The di;erence
between JB and H3–4 tests is relatively small; which is in line with the results of
Fiorentini et al. (2003b) who found that the test based on the fourth moment for
GARCH models is still valid even if the parameters are estimated. 21 Observe that the
magnitude of normality rejection is in the following increasing order: FF–US$, UK
–US$, SF–US$, and Yen–US$. Interestingly, this order is the same as one implied

20 We are grateful to Neil Shephard for providing us with the data.
21 Recall that exchange rates returns are symmetric.
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by the Student GARCH models estimated by Kim et al. (1998), since these authors
reported in their Table 13 the following degrees of freedom: 12.82, 9.71, 7.57 and
6.86.

6.2. Second example: realized volatility

Several recent studies highlight the advantage of using high-frequency data to mea-
sure volatility of 8nancial returns. These include Andersen and Bollerslev (1998),
ABDL (2001) and Barndor;-Nielsen and Shephard (2001). For a survey of this liter-
ature, Andersen et al. (2002) and Barndor;-Nielsen and Shephard (2002) should be
consulted. Typically, when one is interested in volatility over, say, a day, then these
papers propose to study the estimation of this volatility by the sum of the intra-daily
squared returns, such as returns over 5 or 30 min. This measure of volatility is called
the realized volatility.
More precisely, consider St a continuous time process representing the price of an

asset or the exchange rate between two currencies. Assume that it is characterized by
the following stochastic di;erential equation:

d log(St) = mt dt + �t dWt with d�2t = m̃t dt + �̃t dW̃ t ; (6.2)

where Wt and W̃ t are standard Brownian processes, potentially correlated. Assume that
the time t is measured in units of 1 day. Consider a real h such that 1=h is a positive
integer. Then, integrated and realized volatility denoted, respectively, by IVt and RVt(h)
are de8ned by

IVt ≡
∫ t

t−1
�2u du and RVt(h) ≡

1=h∑
i=1

r(h)2t−1+ih; (6.3)

where r(h)t−1+ih is the return over the period [t − 1 + (i − 1)h; t − 1 + ih], given by

r(h)t−1+ih ≡ log(St−1+ih)− log(St−1+(i−1)h). It turns out that when h goes to zero, realized
volatility RVt(h) converges (in probability) to integrated volatility IVt .
An assumption made in ABDL (2003) is conditional normality of the log of realized

volatility. Hence, log-realized volatility are also unconditionally normal. This is our
second example. We consider the same data as in ABDL (2003), 22 i.e., returns of
three exchange rates, DM–US$, Yen–US$ and Yen–DM, from December 1, 1986
through June 30, 1999. The realized volatilities are based on observations at 5 and
30 min. Therefore, we have six series.
In Table 10, we provide the results of testing normality of log-realized volatility with

unknown mean and variance. The weighting matrix is estimated by a HAC procedure
of Andrews (1991). It is clear that unconditional normality of log-realized volatility is
rejected, particularly for realized volatility based on 5-min returns. 23 Observe that the
rejection is due to the asymmetry of the distribution. Thomakos and Wang (2003) also
studied the log-normality of the realized volatility process by using among other tests,

22 We are grateful to Ramazan GenYcay for providing us the OLSEN data and to Torben Andersen and
Paul Labys for providing us their data.
23 In their study, ABDL (2003) used 30-min realized volatilities.
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Table 10
Testing log-normality of realized volatility

DM–US$-5 DM–US$-30 Yen–US$-5 Yen–US$-30 Yen–DM-5 Yen–DM-30

H3 10.6 (0.00) 8.3 (0.00) 10.2 (0.00) 7.0 (0.01) 8.7 (0.00) 3.6 (0.06)
H4 7.5 (0.01) 5.9 (0.02) 3.6 (0.06) 3.4 (0.06) 5.2 (0.02) 3.4 (0.07)
H5 0.1 (0.70) 2.9 (0.09) 1.1 (0.29) 2.2 (0.14) 0.7 (0.39) 0.02 (0.97)
H6 0.0 (1.00) 0.04 (0.85) 0.7 (0.39) 1.0 (0.32) 1.8 (0.18) 1.0 (0.32)
H7 8.9 (0.00) 0.8 (0.36) 1.0 (0.32) 1.6 (0.20) 0.7 (0.39) 2.7 (0.10)
H8 0.7 (0.40) 0.5 (0.49) 0.9 (0.34) 1.3 (0.26) 1.0 (0.31) 1.7 (0.20)
H9 1.5 (0.23) 0.6 (0.45) 0.07 (0.93) 4.0 (0.05) 8.1 (0.00) 0.9 (0.35)
H10 0.6 (0.45) 1.1 (0.30) 2.2 (0.14) 4.0 (0.04) 1.1 (0.30) 0.4 (0.52)
H3–4 16.9 (0.00) 10.5 (0.01) 16.8 (0.00) 9.6 (0.01) 11.0 (0.00) 7.0 (0.03)
H3–5 17.6 (0.00) 10.5 (0.01) 17.4 (0.00) 9.8 (0.02) 17.3 (0.00) 7.7 (0.05)
H3–6 17.7 (0.00) 15.2 (0.00) 19.2 (0.00) 16.0 (0.00) 17.3 (0.00) 7.8 (0.10)
H3–7 24.0 (0.00) 15.5 (0.01) 26.2 (0.00) 24.5 (0.00) 18.6 (0.00) 10.1 (0.07)
H3–8 25.6 (0.00) 15.5 (0.02) 28.2 (0.00) 25.9 (0.00) 18.9 (0.00) 10.2 (0.12)
H3–9 25.9 (0.00) 17.5 (0.01) 28.3 (0.00) 26.4 (0.00) 25.6 (0.00) 12.1 (0.10)
H3−10 27.0 (0.00) 19.9 (0.01) 28.5 (0.00) 27.9 (0.00) 26.2 (0.00) 12.5 (0.13)

Note: We tested the normality assumption of the log of realized volatility. The realized volatility is
computed with 5 and 30-minute returns. We reported the test statistics and their corresponding p-values
in parentheses. We used the same data as ABDL (2003). We used a HAC method of Andrews (1991) to
estimate the weighting matrix. Hi–j is the joint test based on Hk , i6 k6 j.

the KS and JB. They concluded that realized volatility is log-normal. However, these
authors used a Monte Carlo study to correct the size of their tests, which is therefore
a model-based correction.
We conclude this empirical section by one remark. In our tests, we assumed that the

weighting matrix is well de8ned. This is not necessarily the case. In particular, ABDL
(2003) reported results that clearly indicate a presence of long memory in log-realized
volatility. In this case, the weighting matrix is not well de8ned and our test procedures
are not valid. However, this is also the case for the procedures of ABDL (2003)
which are based on the skewness, kurtosis, and non-parametric estimation of density
of log-realized volatilities. Actually, some theoretical results are derived in Beran and
Ghosh (1991). Following Taqqu (1979), they considered an expansion approach of
the test statistic of interest onto the Hermite polynomials and show that its speed of
convergence and the asymptotic distribution depends on the long memory parameter.
For instance, the speed of convergence of the third Hermite polynomial may di;er
from one of the fourth Hermite polynomial. This is why Thomakos and Wang (2003)
proved in their Monte Carlo study that the correction depends on the sample size
and indeed on the long memory parameter. It is worth noting that Beran and Ghosh
(1991) assumed that the process is Gaussian, which means that both unconditional
and conditional distributions are Gaussian, which is not our case. In addition, they did
not take into account the parameter uncertainty problem. Testing normality under long
memory in our framework is more diPcult and is left for future research.
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7. Conclusion

In this paper, we have considered testing marginal normal distributional assump-
tions for both cross-section and time series data. We used the GMM approach to
test moment conditions given by Stein (1972) equations and the 8rst class of mo-
ment conditions derived by Hansen and Scheinkman (1995) when the process of in-
terest is a scalar di;usion. The main advantage of our approach is that tests based
on Hermite polynomials are robust against parameter uncertainty. In addition, the
GMM setting is well suited to take into account serial correlation by using a HAC
procedure. We provided simulation results that clearly show the usefulness of our
approach. We also applied our approach to test for normality in three volatility
models.
Three main extensions have to be considered. The 8rst one is to extend our approach

to the multivariate case. The second is to consider other distributions, in particular
Pearson ones. These two extensions are under consideration by using the Hansen and
Scheinkman (1995) moment conditions which are valid in both multivariate normal
and non-normal cases. A third important extension will be testing normality under
long memory.
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Appendix.

Proof of Proposition 4.1. Consider the 8rst example and observe that

g(zt ; )) = g̃(ut())) = g̃
(

yt − m(xt ; ))
�(xt ; ))

)
:
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Then, we have

@g
@) � (zt ; )) = g̃′

(
yt − m(xt ; ))

�(xt ; ))

)
@m
@) � (xt ; ))

−g̃′
(

yt − m(xt ; ))
�(xt ; ))

)
(yt − m(xt ; )))

�2(xt ; ))
@�

@) � (xt ; ))

= g̃′(ut()))
@m
@) � (xt ; ))− g̃′(ut()))ut())

1
�(xt ; ))

@�
@) � (xt ; )):

Hence, we have

E
[

@g
@) � (zt ; ) 0)

]
=E[g̃′(ut() 0))]E

[
@m
@) � (xt ; ) 0)

]

−E[g̃′(ut() 0))ut() 0)] E
[

1
�(xt ; ))

@�
@) � (xt ; ) 0)

]

since xt is an exogenous variable. Hence, under (4.15), we have E[(@g=@))(zt ; ) 0)]=0;
i.e., (4.7) holds. This achieves the proof for the 8rst example. The same proof holds
for the second example since ut is independent of y�, �6 t − 1.
Consider now the third example. We still have )= (m; �). Hence

@g
@) � (zt ; )) = g̃′(ut()))

[
1

0

]
− g̃′(ut()))ut())

1
�

[
0

1

]

and

E
[
@g
@)
(zt ; ) 0)

]
= 0

under (4.15). This achieves the proof for the third example.

Proof of Proposition 4.2. Since g̃(x)=f′−xf(x), we have g̃′(x)=f′′(x)−xf′(x)−f(x)
and xg̃′(x)=(xf′(x))′−x(xf′(x))+f′(x)−xf(x)−2f′(x). Applying the Stein equation
(2.1) to f′(x) and xf′(x) proves the proposition.

Proof of Proposition 4.3. The orthogonality property of the Hermite polynomials, i.e.
(2.5), and the 8rst result in (2.7) prove the proposition.

Lemma. Let y1; y2; : : : ; yT , an i.i.d. sample of a random variable Y that follows a
T (8) where 8 is assumed to be higher than eight (8¿ 8), and de1ne the random
variable X by X = Y

√
(8 − 2)8−1. Then

√
T




1
T

T∑
t=1

H3(xt)

1
T

T∑
t=1

H4(xt)

−
0√

3
2

1
8 − 4




T→+∞−→
(
0

0
;

(
A(8) 0

0 B(8)

))
; (A.1)
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where

A(8) =
82 − 8+ 10
(8 − 6)(8 − 4)

and B(8) =
2483 + 132182 + 7088 − 1572

(8 − 8)(8 − 6)(8 − 4)
:

As a consequence(
1√
T

T∑
t=1

H3(xt)

)2
T→+∞−→ A(8)!2(1) (A.2)

and (
1√
T

T∑
t=1

H4(xt)

)2
T→+∞−→ +∞: (A.3)

In addition, when T is large, we have the following approximation result:(
1√
T

T∑
t=1

H4(xt)

)2
∼ 1

T
B(8)!2(1; T 2C(8)) where C(8) =

3
2

1
(8 − 4)B(8)

:

(A.4)

Proof. Given that Y ∼ T(8), EYp is well de8ned when p¡8. In this case, we have
EYp=8p=2?((p+1)=2)?((8−p)=2)=(?( 12 )?(8=2)) if p is even and EYp=0 otherwise.
Thus, for 8¿ 8, we have E[H3(X )] = Cov(H3(X ); H4(X )) = 0, E[H4(X )] =√
3
21=(8−4). In addition, we have Var(H3(X ))=EH 2

3 (X )=6
−1(EX 6−6EX 4+9EX 2)=

A(8). The same computations lead to show that Var(H4(X )) = B(8). This achieves the
proof of (A.1). Results (A.2)–(A.4) are implied by (A.1).
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