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Abstract

Stylised facts for univariate high–frequency data in finance are well–known. They include scaling
behaviour, volatility clustering, heavy tails, and seasonalities. The multivariate problem, however,
has scarcely been addressed up to now.

In this paper, bivariate series of high–frequency FX spot data for major FX markets are inves-
tigated. First, as an indispensable prerequisite for further analysis, the problem of simultaneous
deseasonalisation of high–frequency data is addressed. In the bulk of the paper we analyse in de-
tail the dependence structure as a function of the time scale. Particular emphasis is put on the tail
behaviour, which is investigated by means of copulas and spectral measures.

1 Introduction

Numerous papers have studied statistical properties of one–dimensional return data in finance. Results
like leptokurtosis, stochastic volatility effects, occurrence of extremes, seasonalities, and scaling behav-
ior are now referenced to as stylised facts of empirical finance. The work by Olsen & Associates has
extended these facts across sampling frequencies reaching from minutes to months; see for instanceDa-
corogna et al.(2001). Similar results for more–dimensional return data are however scarce. InEmbrechts
et al.(2002) some of the basic techniques for the analysis of dependence beyond linear correlation were
introduced through the notion of copula. In this paper, the latter techniques will be applied to a two–
dimensional high–frequence (hourly) data set of FX returns. As such, the change in dependence as a
function of the sampling frequency will be established. Also, for each separate frequency, ellipticality
will be tested. Finally, several statistical techniques for the study of extremal clustering in higher dimen-
sions will be applied. As a necessary prerequisite for this analysis, a method for deseasonalising bivariate
returns for time horizons up to one day will be presented.

The outline of the paper is as follows. Section2 presents the transformation from the raw high–
frequency (tick–by–tick) data to properly deseasonalised data. In Section3, several families of copulas
will be fitted to deseasonalised two–dimensional FX data, and this at several frequencies (from hourly
to daily). Goodness–of–fit tests, including tests for ellipticality, are presented in Section4. In Section5,
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the problem of clustering of extremes in two dimensional data is discussed. Finally, Section6 gives an
outlook for further research.

2 The data

We investigate a high-frequency bivariate time series consisting of USD/DEM and USD/JPY spot rates.
Before they are to be used for dependency analysis, the following preliminary steps have been performed:

• collection and filtering,

• regularisation and transformation to logarithmic middle prices, and

• deseasonalisation.

They are described in turn.

2.1 Collection and filtering

The data set consists of tick–by–tick data originating mainly from Reuters and collected and filtered
by Olsen Data. It consists of a large part but not all of the quotes emitted in the market because the
market coverage of the data providers it not complete and depends on the region of the world. The high-
frequency series are irregularly spaced; they start February 1986 and end June 30, 2001. Since we are in-
terested in USD/DEM, which ends December 31, 1998, we discard later data also for other currencies. A
single quote at timet consists of a bid price,pBidα,t , and an ask price,pAskα,t , α ∈ {USD/DEM, USD/JPY}.
For both series, middle prices are displayed in Figure1. In a first step the data are cleaned by means
of a special filter, described inDacorogna et al.(2001), that takes peculiarities of the financial market
into account. Among others it corrects for decimal errors caused by the transmission line and removes
automatically generated fake quotes during inactive periods used by market participants to test the trans-
mission channel. Since only a small fraction of quotes is removed by the filter the filtered time series is
still irregularly spaced, and the number of data points is very high (about 10 million for the USD/DEM
series).

2.2 Regularisation and transformation to logarithmic middle prices

To reduce the data we regularise the time series to a regular series with step sizeδ = 5 minutes by linear
interpolation. Since we are not interested in effects related to the bid–ask spread, we will work with
logarithmic middle pricesξα,t defined as

ξα,t =
log
(
pBidα,t · pAskα,t

)
2

. (1)

Returns with respect to a time horizon∆T are then defined as the difference of logarithmic middle prices:

rα,t[∆T ] = ξα,t − ξα,t−∆T . (2)

Hourly USD/DEM returns are displayed in Figure 2. The advantage of taking the logarithm is that returns
of the inverted rate (e.g. DEM/USD) are just the negative of the corresponding returns of the original
rate USD/DEM, as one intuitively expects.
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Figure 1: FX middle prices for USD/DEM (top) and USD/JPY (bottom).
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Figure 2: Hourly USD/DEM returns of the whole 11-year period (top) and for 1 year (bottom). Notice
the weekly seasonalities.
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2.3 Deseasonalisation of financial data

Practically all financial time series exhibit seasonalities. The most striking one is the absence of any
activity during weekends, which causes a weekly seasonality in the autocorrelation function of lagged
absolute returns. With high–frequency data the problem of seasonality becomes much more important
and more difficult to handle because the entire form of the weekly activity pattern (mean computed
conditional on the time of the week) has to be taken into account. In the autocorrelation function of
hourly absolute returns, the weekly and daily periods can be distinguished, as shown in Figure3. It
also shows that the seasonal patterns of the two FX rates, though overall similar, exhibit differences in
the details. Already for univariate time series deseasonalisation is not an easy task and there is not yet
unanimity on how to solve it. In the multivariate case, deseasonalisation is still largely an open problem.

Before presenting our method of bivariate deseasonalisation we will summarise the two main ap-
proaches of deseasonalising univariate high–frequency time series. More detailed discussions can for
instance be found inDacorogna et al.(2001).

2.3.1 Approaches for deseasonalising univariate financial time series

There are two main approaches of deseasonalising univariate high-frequency time series: time transfor-
mation and volatility weighting by periodically varying weights. Eventually both approaches are based
on a weekly conditional mean of volatility similar to the one shown in Figure4. One of the earliest
deseasonalisation methods has been developed by Olsen & Associates; seeDacorogna et al.(1993). It
consists of a transformation from physical time to an activity–related time scale, the so–calledϑ-time
scale, which is proportional to a measure of the market activityat:

ϑt2 − ϑt1 ∝
∫ t2

t1

at dt. (3)

The market activity is based on the volatilityvτ estimated by a mean of absolute hourly returns, condi-
tional on the time in the week:

vτ [1 hour] = E [|rt[1 hour]| | tmod(1 week) = τ ] . (4)

Volatility and market activity turn out to be empirically related by

at ∼ (vt)
1/h (5)

whereh is the scaling exponent of absolute returns,

E[|rt[∆T ]|] ∼ (∆T )h. (6)

While h = 0.5 for Brownian motion, values empirically observed are found to be around0.58 for major
currencies. In addition the activityat is decomposed into component activitiesai,t of the mean regional
markets (American, East-Asian, European), which is important for properly taking public holidays into
account. For more details on (3)–(6), seeDacorogna et al.(2001).

Time transformation is appealing because it is intimately related to the concept of random time
change in the theory of stochastic processes. In addition it conserves the aggregation property of returns,

rt[∆T1 + ∆T2] = rt−∆T2 [∆T1] + rt[∆T2], (7)

which follows immediately from (2). However, since any coordinate of a multivariate series has its own
activity–related time scale, it is currently unclear how to construct a time transformation for multivariate
series without losing synchronicity of the different coordinates. In addition, there is not yet unanim-
ity about the interpretation of (6); see for instanceBarndorff-Nielsen and Prause(2001) for a critical
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Figure 3: Autocorrelation function of bivariate absolute hourly returns (USD/DEM vs. USD/JPY).
Notice the weekly and the daily seasonality. The latter is much more pronounced for USD/DEM rates
than for USD/JPY rates.
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discussion. Therefore (5) is at least questionable. For all these reasons we will not rely on (3)–(6) for
deseasonalisation in this paper.

Alternative approaches based on volatility weighting have been proposed byBollerslev and Ghysels
(1996), Andersen and Bollerslev(1997), Taylor and Xu(1997), Andersen and Bollerslev(1998), Martens
et al.(2002), Beltratti and Morana(1999). In this framework the return is written asrt[δ] = σ̃t[δ] st[δ] εt
for the generic intraday return at dayt (Andersen and Bollerslev(1997), Andersen and Bollerslev
(1998)). Here, rt[δ] represents the intraday 5 minutes return,σ̃t[δ] the deseasonalised volatility,εt
denotes an i.i.d. (independent, identically distributed) mean zero, unit variance error term, andst[δ]
essentially represents the seasonal pattern. Thus, the deseasonalised return reads:

xt[δ] = σ̃t[δ] εt =
rt[δ]
st[δ]

. (8)

Different methods have been proposed to model the seasonal volatilityst[δ] (seeAndersen and Bollerslev
(1997), Martens et al.(2002), Beltratti and Morana(1999), Andersen and Bollerslev(1998)).

2.3.2 Bivariate deseasonalisation

For the above-mentionned reasons no attempt towards a bivariate time transformation is made in this
paper. Instead, we will use a weighting method similar to (8), which can be extended to the multivariate
case in a straightforward way. Our definition of volatility is based on quadratic variations, which has
the advantage that the theoretically expected scaling exponent 1 is also observed empirically, at least in
the case of freely floating currencies of major markets. For any instrumentα the deseasonalised return
xα,t[∆T ], which will be analysed in detail in the following sections, is computed by

xα,t[∆T ] =


rα,t[∆T ]
vα,t[∆T ] , if vα,t[∆T ] > 0,

0 , otherwise,

(9)

where∆T = nδ is the time horizon of the return andvα,t[∆T ] is the expected volatility of instrumentα.
Note thatvα,t[∆T ] = 0 impliesrα,t[∆T ] = 0. In contrast to (8) the time horizon can be chosen freely,
at least up to one day. This is important in the present context because we are interested in the variation
of the dependence structure as a function of time.

In the remainder of this section we will explain howvα,t[∆T ] is computed. This is similar to the
method described inBreymann(2000). To alleviate notation, the indexα will be dropped whenever
this is possible without ambiguity. In fact, quantities withα dropped can be interpreted as two element
vectors, and the operations on them are understood to apply component-wise.

For reasons which will become clear below we prefer to use the integrated squared volatility

V 2
t =

∑
t′≤t

(vt′ [δ])
2 (10)

whereδ = 5 minutes is the binning of the volatility histogram (see (16) below). The volatilityvt[∆T ]
for an arbitrary horizon∆T is recovered by

(vt[∆T ])2 = (∆Vt[∆T ])2 =
n−1∑
i=0

(vt−iδ[δ])
2 (11)

with n = ∆T/δ. Here the definition

∆Vt[∆T ] :=
√
V 2
t − V 2

t−∆T (12)
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Figure 4: Mean weekly volatility pattern, averaged from 4/86 till 10/98. Top: USD/DEM, bottom:
USD/JPY. Full lines: winter time, dotted lines: Summer time. Notice that during the periods where the
European or the American Market are active, both patterns are slightly shifted (dotted line left of the
full line) while no shift associated with Daylight Saving Time (DST) is present when only the Japanese
market is active (most remarkably seen during the Japanese lunch break). The fact that at the beginning
of the weekly activity period the dotted line is at theright of the full line stems from the Australian
market, where a DST shift is present during the months October–April.
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has been used. Thus, the deseasonalisation can be written as

Xt[∆T ] =
ξt − ξt−∆T√
Vt − Vt−∆T

. (13)

As already noted above, deseasonalised returns loose the aggregation property (7). Instead, from (7), (9),
and (10) follows the relation

xt[∆T ] =
xt−∆T2 [∆T1] vt−∆T2 [∆T1] + xt[∆T2] vt[∆T2]

vt[∆T1 + ∆T2]

=
xt−∆T2 [∆T1] ∆Vt−∆T2 [∆T1] + xt[∆T2] ∆Vt[∆T2]

∆Vt[∆T ]
(14)

with ∆T = ∆T1 + ∆T2. Thus, time aggregation of deseasonalised returns requires the knowledge of
V 2
t .

2.3.3 The seasonal volatility pattern

Modelling requirements:

• The possibility to model arbitrary patterns with abrupt changes in market volatility as they for
instance occur during the Japanese lunch break;

• The modelling of the slow dynamic behaviour of the activity pattern to take into account slow
temporal changes in the habits of the market participants, institutional changes, etc.;

• Keeping track of Daylight Saving Time (DST) to take into account a partial 1 hour displacement
of the average volatility patterns for DST and non-DST periods, one with respect to the other
(Figure4);

• The modelling of the geographical decomposition of market activity to take into account perturba-
tions of the regular weekly activity pattern due to local holidays affecting only parts of the market.

The first requirement is met by using weekly volatility histograms with a 5 minutes time step, and the sec-
ond and third requirements are met by treating the volatility pattern of different DST periods separately.
To meet the last requirement we decompose the squared volatilityv2

t [δ] into the product

v2
t [δ] = at

(
v(d)
τ [δ]

)2
(15)

whereat is a relative market activity factor andv(d)
τ [δ] is the volatility averaged over DST periodd

conditional to the time in the week,τ = tmod(1 week):

(
v(d)
τ [δ]

)2
=

1
Nd

Nd∑
i=1

(rti+τ [δ])
2. (16)

Here,τ ∈ {0 h, δ, 2δ, . . . , 168 h− δ} is the time in the week,ti is the start of weeki (always a Sunday,
00:00:00 UTC (GMT)), andNd is the number of weeks in DST periodd. In (15) the appropriate DST
periodd is selected by the conditiont ∈ d. The market activity factorat is 1 for normal days, when the
expected volatility isv(d)

τ [δ]. If the expected volatility is lower,at assumes values strictly less than one.
This happens for public holidays. Since public holidays are different in different regional markets,at is
written as a sum of regional market activity factors,at =

∑
i ai,t. We work with an American, an East-

Asian, and a European market component. When a public holiday occurs in one of these components,
the correspondingai,t is set to zero.
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Figure 5:The one hour deseasonalised returns.
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2.3.4 The Weekends

Weekends need special treatment because even though the mean activity is low it occasionally happens
that a big price jump occurs between Friday evening closing and Monday morning opening. These price
jumps cannot be properly accounted for by the mean weekend activity and, therefore, deteriorate the
deseasonalisation results for short time horizons up to about one day. One way of dealing with this effect
would be to drop the return between the last Friday evening price and the first Monday morning price.
Beside the fact that this is difficult in an OTC market without well-defined opening and closing times it
has the additional drawback that it is in conflict with the modified aggregation property (14). Therefore
we decided to adopt the following procedure. An effective weekend volatilityv(w)[δ] is computed for
every weekendw by

v(w)[δ] =
∣∣∣r
t
(end)
w

[∆Tw]
∣∣∣√ δ

∆Tw
, (17)

where∆Tw = t
(end)
w − t

(start)
w is the weekend length. Start and end of weekends are fixed tot

(start)
i =

Friday, 21:00:00 UTC andt(end)i = Sunday, 21:00:00 UTC, respectively. The volatilityvt[δ] in (15) is

set to this value ift ∈ (t(start)w , t
(end)
w ]. In this way, weekend peaks are exactly compensated even if

the weekend is dropped simultaneously from the series of logarithmic pricesξt and from the integrated
volatility patternV 2

t ; notice, in particular, that (13) remains valid. If a jump occurs during the weekend,
a corresponding jump will be present inV 2

t such that deseasonalisation is assured.
Here, a note of caution is in order. First, our studies showed that the weekend weighting destroys

the dependence structure of the returns for time horizons longer than about four days, while no signif-
icant effect could be seen in the margins. By construction of the weekend weighting the destruction of
dependence only affects the returns reaching over a weekend. For horizons of the order of one hour this
corresponds to less than 1% of the data. This ratio increases to 20% for daily data, and to 80% for a four
day horizon. For time horizons from one week onwards all data are affected.

Second, deseasonalisation is no longer meaningful for time horizons being multiples of one week.
This follows from the fact that by virtue of (10) and (16), V 2

t − V 2
t−1 week is constant within a given DST

period. Even though this argument contains the assumption of no special weekend weighting, one can
argue that for such time horizons, weekends are part of the regular dynamics and should not be treated
separately. Thus, to treat time horizons between one day and one week adequately, a smooth transition
from the deseasonalisation procedure for short horizons presented in this paper to no deseasonalisation
for long horizons is needed. We emphasize that the need for such a transition only arises in the case of
multivariate data.

2.4 Univariate properties of deseasonalised returns

The series of 1 hour deseasonalised returns is displayed in Figure5. Even though volatility clustering is
present no seasonalities can be distinguished. Figure6 displays the autocorrelation function of absolute
returns for a time horizon of 1 hour, which clearly shows the well-known long-range correlation of the
volatility. This figure confirms also the efficient removal of seasonalities, as can be seen by comparison
with Figure3. To show the tail behavior, QQ–plots of the univariate series are displayed in figures7 and8
for time horizons ranging from 1 hour to 1 day. The well–known transition from pronounced heavy tails
at short horizons to more thin–tailed distributions at long time horizons is clearly seen.

3 Dependence structure modelling

Given the bivariate deseasonalised returns from (9), we want to analyse the dependence structure at each
of the different frequencies: one hour, two hours, four hours, eight hours, twelve hours and one day. In
each case, we will fit parametric families of copulas using a two stage semi–parametric procedure (see
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Figure 6:Autocorrelation function of absolute deseasonalised 1 hour returns.
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Figure 7: The QQ–plots of the normal against the empirical quantiles for several frequencies of DEM
deseasonalised returns.
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Figure 8: The QQ–plots of the normal against the empirical quantiles for several frequencies of JPY
deseasonalised returns.
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Genest et al.(1995)). This procedure consists of transforming the marginal observations into uniformly
distributed vectors using the empirical distribution functions, in a first step. Then, the copula parameters
are estimated by the maximisation of a pseudo log-likelihood function. Each one of these fitting phases
is explained more in detail below.

For each considered frequency we have two vectors of observations, deseasonalised returns of FX
rates quoted against the US Dollar, one for USD/DEM and another for USD/JPY. The scatter plots are
shown in Figure9. We denote the random variable for the deseasonalised USD/DEM returns byX1

and for the deseasonalised USD/JPY returns byX2. If {xi1, xi2, . . . , xin} are then observed univariate
deseasonalised returns of the FX rateXi (i = 1, 2) for a given frequency, then

F̂in(xij) =
1

n+ 1

n∑
k=1

1{xik≤xij},

are pseudo–observations approximately uniformly distributed in[0, 1]. Figure10 displays the scatter
plots of the bivariate pseudo–observations

(F̂1n(x1), F̂2n(x2)),

and Figure11 shows the same returns but plotted with standard normal margins. The number of points
plotted in each panel varies a lot and that makes them harder to compare. But even so, we can still see in
Figure11 that there is an evolution from a diamond to an elliptic shape as the time frequency decreases.
In Figure10, for the one, two and four hour returns, we plotted sub–samples of the pseudo–observations
otherwise the scatter plots of the full samples would be just three useless black squares.

Computing the bivariate pseudo–observations(F̂1n(x1), F̂2n(x2)) for each time frequency is the

first step for the copula fitting. On these transformed data sets we can estimate the parameters for several

copula families. Here we consider the Gaussian, thet, the Frank, the Gumbel and the Clayton copulas.

The specifications of these distribution families can be found inEmbrechts et al.(2002) and Nelsen

(1999). See alsoJoe(1997).

In Table1 the parameter estimates, the corresponding standard errors, and the Akaike information

criterion values (AIC) are fitted for each of the models. For every time frequency the models are ordered

by the AIC value, according to which lower values indicate a better fit. The first observation is that, for

the five models considered, thet copula model has the best performance according to the AIC criterion.

In Figure 12 we plotted, for each model and for each frequency, the AIC of thet copula minus the

AIC of the model and divided this difference by the number of observations (in order to give the plots a

comparable scale). The degrees of freedom estimated for thet copula are plotted in parentheses. We note

that the degrees of freedom of thet copula increase from4.3 for hourly returns to5.7 for daily returns.

This is similar to the behavior of the tail index estimates for univariate data as a function of the time

horizon; seeMüller et al.(1998). It raises the question of what happens to the tail dependence when the

time frequency of the returns vary. If we assume thet copula as a reasonable model for the data, from the

results in Table1 we can then estimate the tail dependence coefficient at the different time frequencies.

This coefficient is given by

lim
α→1−

P (X2 > F−1
2 (α)|X1 > F−1

1 (α)) = λ

as long as the limitλ ∈ [0, 1] exists.F1 andF2 denote the distribution functions of the random variables

X1 andX2 respectively. Ifλ ∈ (0, 1], X1 andX2 are asymptotically dependent and ifλ = 0 the two

variables are said to be asymptotically independent. In the case of thet copula,λ takes the form

λ = 2tν+1

(√
(ν + 1)(1− ρ)/(1 + ρ)

)
,
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Figure 9:Scatter plots of deseasonalised returns of DEM and JPY for different time frequencies.
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Figure 10:Bivariate returns of DEM and JPY for different time frequencies mapped into the unit square
by its marginal empirical distributions.
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Figure 11: Bivariate pseudo–observations for different time frequencies plotted with standard normal
margins.
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Frequency n. obs. Model Estimate s.e. AIC
t 0.563; 4.339 0.003; 0.087 -32698
Gumbel 1.577 0.005 -29052

1 hour 77 758 Gaussian 0.555 0.002 -28674
Frank 4.030 0.025 -27275
Clayton 0.880 0.007 -23997
t 0.585; 4.269 0.004; 0.120 -17951
Gumbel 1.622 0.007 -16066

2 hours 38 976 Gaussian 0.578 0.003 -15859
Frank 4.252 0.036 -14983
Clayton 0.944 0.010 -13267
t 0.599; 4.282 0.005; 0.169 -9481
Gumbel 1.652 0.009 -8530

4 hours 19 514 Gaussian 0.592 0.004 -8400
Frank 4.402 0.051 -7957
Clayton 0.978 0.014 -6936
t 0.619; 4.833 0.007; 0.293 -5006
Gumbel 1.688 0.014 -4561

8 hours 9 767 Gaussian 0.610 0.005 -4540
Frank 4.633 0.073 -4347
Clayton 1.020 0.020 -3697
t 0.623; 5.438 0.008; 0.449 -3350
Gaussian 0.617 0.007 -3111

12 hours 6 513 Gumbel 1.689 0.017 -3047
Frank 4.680 0.089 -2953
Clayton 1.037 0.025 -2518
t 0.624; 5.712 0.011; 0.714 -1675
Gaussian 0.621 0.009 -1576

1 day 3 259 Gumbel 1.689 0.024 -1525
Frank 4.650 0.125 -1471
Clayton 1.056 0.035 -1287

Table 1: Parameter estimates, standard errors and Akaike’s information criterion values for the various
copula models and time frequencies. For thet copula the first parameter estimate is the correlation and
the second is the degrees of freedom and respectively for the s.e.’s.
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wheretν denotes the tail of a standard univariatet distribution withν degrees of freedom; seeEmbrechts

et al.(2002). As we are dealing with thet copula, which has symmetric tails, we do not have to distin-

guish between upper and lower tail dependence. Table2 shows the tail coefficient estimates for the time

Frequency ν̂ ρ̂ λ̂

1 hour 4.339 0.563 0.273
2 hours 4.269 0.585 0.291
4 hours 4.282 0.599 0.299
8 hours 4.833 0.619 0.287
12 hours 5.438 0.623 0.264

1 day 5.712 0.624 0.254

Table 2: Tail coefficient estimates for the DEM and JPY bivariate returns for the different time frequen-
cies considered.

frequencies considered for the bivariate DEM and JPY returns, assuming at model for the dependence

structure. The values obtained indicate that the bivariate returns DEM and JPY remain asymptotically

dependent across the time frequencies considered. A confidence interval analysis can be worked out.

4 Goodness–of–fit tests

4.1 Test based on the probability integral transformation

A general goodness–of–fit test, valid for any copula family, can be performed using the following well

known result, the probability integral transformation; see for instanceRosenblatt(1952).

Let X = (X1, X2, . . . , Xd) be a random vector with absolutely continuous distribution function

FX(x1, x2, . . . , xd). Let FXi(xi) = P (Xi ≤ xi) be the distribution function of the univariate margins

Xi, for i = 1, . . . , d. Consider thed transformations

T (x1) = P (X1 ≤ x1) = FX1(x1),
T (x2) = P (X2 ≤ x2|X1 = x1) = FX2|X1

(x2|x1),
...

T (xd) = P (Xd ≤ xd|X1 = x1, . . . , Xd−1 = xd−1)
= FXd|X1,...,Xd−1

(xd|x1, . . . , xd−1).

Then the random variablesZi = T (Xi), for i = 1, . . . , d are uniformly and independently distributed on

[0, 1]d.
Suppose now thatC is a copula such that

FX(x1, x2, . . . , xd) = C(FX1(x1), . . . , FXd
(xd)).

If Ci(u1, . . . , ui) denotes the jointi-marginal distribution

Ci(u1, . . . , ui) = C(u1, . . . , ui, 1, . . . , 1), i = 2, . . . , d− 1,

of (U1, . . . , Ui), with C1(u1) = u1 andCd(u1, . . . , ud) = C(u1, . . . , ud), then the conditional distribu-

tion ofUi, given the values ofU1, . . . , Ui−1, is

Ci(ui|u1, . . . , ui−1) =
∂i−1Ci(u1, . . . , ui)
∂u1 . . . ∂ui−1

/
∂i−1Ci−1(u1, . . . , ui−1)

∂u1 . . . ∂ui−1
,
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Figure 12:Comparison of the AIC values for the different frequencies.
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for i = 2, . . . , d. Hence we can write the variablesZi, for i = 2, . . . , d, using the conditional distributions

Ci,

Zi = Ci(FXi(Xi)|FX1(X1), . . . , FXi−1(Xi−1)).

Hence if (FX1(X1), FX2(X2), . . . , FXd
(Xd)) has distribution functionC, then Φ−1(Zi), i =

1, . . . , d, are i.i.d., N(0, 1) distributed. Consequently,S =
∑d

i=1

(
Φ−1(Zi)

)2
has a chi–square dis-

tribution withd degrees of freedom. Concretely, in the cased = 2,

S(X1, X2) =
(
Φ−1(FX1(X1))

)2 +
(
Φ−1(C2(FX2(X2)|FX1(X1)))

)2
. (18)

In performing the test, we do of course assume that theχ2 distribution will not be significantly affected

by the use of the empirical distribution functions used to transform the marginal data.

Other, related tests can for instance be found inKlugman and Parsa(1999) andJunker and May

(2002).

4.2 Test of elliptical symmetry

The test of elliptical symmetry used here is due toManzotti et al.(2002). Suppose thatX is ad dimen-

sional random vector with an elliptical distribution.X can be represented as

X = µ + RAU,

whereµ ∈ Rd,A is a non-singulard×dmatrix,R is a real non negative random variable,U is uniformly

distributed on the unit sphereSd−1 = {x ∈ Rd :‖ x ‖= 1} andR andU are independent. LetΣ = AA′

be the shape matrix. The covariance matrix ofX, Σ0 is proportional toΣ. Let X1,X2, . . . ,Xn be

an i.i.d. sample from ad dimensional distribution. The null hypothesis of the test is that the sample

comes from an elliptically distributed population. LetX̄ andS denote the sample mean and covariance

matrix, respectively. Consider the scaled residualsYk = S−1/2(Xk − X̄) for k = 1, . . . , n. Let

Wk = Yk/ ‖ Yk ‖ for k = 1, . . . , n be the projections of the scaled residuals on the unit sphere. IfX
is elliptically symmetric thenW is approximately uniformly distributed onSd−1.

Considerε > 0 fixed and letnε be the integer part ofεn. Let qn be theε empirical quantile for the

variables‖ Y1 ‖, ‖ Y2 ‖, . . . , ‖ Yn ‖. With the average

Qn(h) =
1
n

n∑
k=1

h(Wk)1{‖Yk‖>qn},

whereh is a function defined onSd−1, the test statisticZ2
n is given by

Z2
n = n

∑
h∈Jjl

Q2
n(h)

for j ≥ 3. The set of functionsJjl is the unionJjl =
⋃
j≤i≤lHi, whereHj denotes the set of spherical

harmonics of degreej in the orthonormal basis as considered inManzotti et al.(2002). This test statistic

consists on averaging spherical harmonics over the projections of theYk’s on the unit sphere. It will be

useful to know that there areN(d, j) =
(
d+j−1
j

)
−
(
d+j−3
j−2

)
linearly independent spherical harmonics of

degreej in dimensiond. LetN denote the number of functions inJjl. The main result ofManzotti et al.
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(2002) states that independently of the unknown parameters of the distribution under the null hypothesis,

the limiting distribution ofZ2
n is that of(1− ε)χ2, whereχ2 is a variable with a chi-square distribution

with N degrees of freedom.

With the d = 2 dimensional data we usedε = 0.05, j = 3 and l = 6. ThenN = 8 and the

orthonormal spherical harmonics used are

h1,j(Wk) = 21/2 cos(jθk), h2,j(Wk) = 21/2 sin(jθk),

for 3 ≤ j ≤ 6 andWk = (cos(θk), sin(θk)).

4.2.1 The estimators

The estimation of the sample covariance matrix requires some care because in this setting, like elliptical

distributions, we often have heavy tailed margins. In this case the standard estimators may have a poor

performance. In order to test for ellipticality it is enough to estimate a matrix which is proportional to

the covariance matrix. Indeed, ifX = µ + RAU is elliptical thenY = µ + R(cA)U, for c > 0, is also

elliptical. Having this in mind, in the bivariate case, we can estimate the matrix

σ−2
1 Σ =

(
1 ρσ2

σ1

ρσ2
σ1

σ2
2

σ2
1

)

using more robust estimators. Here,σ2
i are the diagonal elements ofΣ. For the linear correlation coeffi-

cient, under the elliptical assumption, the estimator based on Kendall’s tau,

ρ̂τ = sin
(π

2
τ̂
)
,

is more efficient and robust than Pearson’s linear correlation estimator; seeLindskog et al.(2001). In

order to estimate the ratio between the standard deviations we can use another dispersion estimator rather

than the standard one,S2
n =

∑n
i=1(xi − x)2/n, like the median absolute deviation,madn. The latter

has some efficiency and bias problems but is very resistant to extreme observations coming from heavy

tails; see for instancePham-Gia and Hung(2001) or Hampel et al.(1986). The sample median absolute

deviation is defined as follows:

madn(x) = median(|x−median(x)|),

wheremedian(x) denotes the sample median of the vector of observationsx. We then use

σ̂2/σ1 = madn(x2)/madn(x1)

as an estimator more robust than the ratio of sample standard deviations.

4.3 Testing the results of the fittings

In Section3, Table1 we ranked the different models fitted according to their AIC values. Table3 contains

the p–values for the probability integral transformation goodness–of–fit test explained in Section4.1. We

have listed only the results for the best fitting models (minimal AIC) from Table1. In the same table

are also the p–values (fourth column) for the ellipticality test described in Section4.2. To test whether
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Time Frequency Probability Integral test P–values for the ellipticality test
Model p-value original margins t margins

1 hour t 0 0 0
2 hours t 0 0 0
4 hours t 0.01 0 0.092
8 hours t 0.27 0 0.231
12 hours t 0.19 0.034 0.369

1 day t 0.74 0.821 0.675

Table 3: P–values of goodness–of–fit and ellipticality tests.

the values given by (18) come from aχ2 distribution we use the Anderson–Darling goodness–of–fit test

(seeAnderson and Darling(1954)). Looking at columns three and four it is only at a frequency of one

day that we cannot reject ellipticality and have strong support for at copula. At higher frequencies, the

situation is more subtle. Thet copula fits well up to eight hours. For four hours and higher, a more

careful analysis (and possibly more intricate copula) is needed, especially as at those frequencies very

large sample sizes (e.g.77′758 bivariate hourly observations) are available. We will come back to this

issue in forthcoming work. Note that the null hypothesis of ellipticality is rejected for frequencies higher

than one day. In column five of Table3, we perform the same ellipticality test, but now after transforming

the marginals to at distribution with the degrees of freedom coming from the columns three and four in

Table1. In this way we avoid that a rejection of the elliptical structure could come from non–elliptical

margins. These new data are plotted in Figure13. Ellipticality is now rejected only at the one and two

hour frequency. Once more, a more detailed analysis, possibly also using non–parametric methodology,

is called for. In the sequel of the paper, we concentrate on the important problem of clustering between

extreme movements, in the literature also referred to as tail dependence.

5 Tail dependence

Several authors have looked at the issue of tail dependence in financial return data. See for instance

St̆arică(1999) for a more mathematical discussion. Other names encountered are contagion and spillover.

Several references inEmbrechts(2002) yield guidance towards the more economic oriented literature.

By definition, the notion of tail dependence concerns bivariate rare events, hence limit theorems lie at the

basis of any analysis. In order to investigate these problems on real data, a large number of observations

is desirable. In Section 5.1 we start the study of the bivariate tail dependence with an estimation of the

spectral measure for all the time horizons considered in the previous sections. We then concentrate in

Section5.2 on hourly data only. Bivariate extremes in these data will be analysed using the theory of

multivariate regular variation, leading to a spectral analysis, and a statistical analysis of bivariate excesses

over high thresholds.

5.1 Spectral measure estimation

The mathematics underlying this section is to be found inResnick(2002) andSt̆arică (1999). Below we

highlight the main definitions and notation. Let‖ · ‖ denote the usual EuclideanL2 norm onRd and

Sd−1 be the unit sphere,

Sd−1 := {x ∈ Rd :‖ x ‖= 1}.
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Figure 13:Bivariate pseudo-observations for different time frequencies plotted witht margins.
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Suppose that thed-dimensional random vectorX has a regularly varying tail distribution. This means

that the tail behaviour ofX is characterised by a tail indexα and the limit

P (‖ X ‖> tx,X/ ‖ X ‖∈ ·)
P (‖ X ‖> t)

v−→ x−αP (Θ ∈ ·), (19)

wherex > 0, t → ∞ exists. The convergence is said to be vague andΘ is a random vector on the

space(Sd−1,B(Sd−1)). The distribution function ofΘ is referred to as the spectral distribution ofX.

Definition (19) is equivalent to the existence of a measureν and a positive sequence(an), an →∞, such

that forn→∞,

nP (a−1
n X ∈ ·) v−→ ν(·). (20)

For a more precise and detailed treatment on this see for instanceResnick(1987). The measureν has the

following scaling property:

ν(vS) = v−αν(S), (21)

for any Borel setS ⊂ [−∞,∞]d\{0}. This property will be useful in order to find an estimator for the

spectral distribution. Intuitively,α indicates the heaviness of the multivariate tails whereasΘ measures

in which parts of the space extremes cluster.

Define forx ∈ Rd andB ∈ B(Rd)

εx(B) =

{
1 if x ∈ B,
0 if x ∈ Bc.

Then a consistent estimator ofcν, for somec > 0, is given by

νn :=
1
kn

n∑
i=1

εXi/b(n/kn),

whereb(.) is the quantile functionb(t) := F←(1 − 1/t), for t > 1, of the random variable‖ X ‖. As

usual in extreme value theory,kn → ∞ andkn/n → 0 asn → ∞; seeResnick(2002). If we estimate

the quantile function with the corresponding empirical estimator

b̂

(
n

kn

)
= ‖ X ‖kn,n,

where‖ X ‖kn,n is thek-th largest value of the one-dimensional{‖ Xi ‖: 1 ≤ i ≤ n} set, we obtain as

estimator of the spectral measure

P̂ (Θ ∈ S) =
1
kn

n∑
i=1

εxi/‖x‖kn,n
(V (S)) (22)

whereV (S) = {x ∈ Sd−1
+ : x/ ‖ x ‖∈ S} andSd−1

+ := {x :‖ x ‖> 1}. The performance of this

estimator very much depends on the choice ofkn. Here we use the scaling property (21) and choosekn
such that̂νn(uSd−1

+ )/(u−αν̂n(Sd−1
+ )) ≈ 1 for values ofu in a neighbourhood of1. We plot the set of

values {(
u,

ν̂n(uSd−1
+ )

u−α̂ν̂n(Sd−1
+ )

)
: 0 < u < 2

}
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Figure 14:The estimated spectral measures for the different time frequencies.

for several values ofkn and choose the one corresponding to the plot for which these values are closer

to 1 aroundu = 1. For more on this seeSt̆arică (1999). We use the Hill estimator to get the tail index

estimatêα. The values obtained lie around 4.

We now estimate the spectral density of the bivariate returnsX of the DEM and JPY data at a given

time frequency using (22). First, choosekn as described above and consider the points{
θi ∈ [0, 2π[: (cos θi, sin θi) =

xi
‖ xi ‖

, ‖ xi ‖>‖ x ‖kn,n, i = 1, . . . , n
}
.

We then plot a non–parametric density estimate for these angular observations using a smoothed kernel

estimator with Gaussian weights and bandwidth0.2π. In a more detailed analysis one could also work

out confidence bands around the estimated functions. In Figure14we have plotted the estimated spectral

densities for each time frequency. We would first like to point out that for a spherical distribution, a

fairly constant spectral density would appear. Peakedness in one or other direction points at clustering of

extremes in that direction. Also, the procedure discussed only uses data in the tails so that no information

from the centre of the distribution enters. Figure14clearly shows clustering of extreme returns in the first

and third quadrant, also referred to as positive dependence. This dependence persists at all frequencies

and turns out to be fairly symmetric. Of course, a basic assumption concerns the property (19); as in

the one–dimensional case, one can show, using extreme value theory, that the limit property (19) is very

natural for multivariate financial return data. For an interesting paper leading to similar conclusions, see

Hauksson et al.(2001).
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5.2 Multivariate excesses

In the previous section, under the assumption (19), we modelled the ocurrence of joint extremes for

bivariate returns by the density of the spectral random variableΘ. In this section we focus, for a given

high thresholdt, on the event{X1 > t,X2 > t}. Similarly we can define sets of returns simultaneously

smaller than a given threshold. As the thresholdt will be large (small) we will concentrate only on

the one hour data which allows for sufficient data in these cases. In Figure15 we plotted the bivariate

excesses for different values of the threshold. For univariate random variables, the Balkema–de Haan–

Pickands result (Theorem 3.4.13(b) inEmbrechts et al.(1997)) yields the generalised Pareto distribution

as a canonical model for the distribution function of conditional excesses. InJuri and Ẅuthrich(2002),

a similar result is proved for bivariate excesses in the case of Archimedean copulas (note that in that

case, one makes an assumption on the copula for the whole domain of the bivariate dependence structure

model). We summarise below their main result which forms the basis for our statistical analysis. The

copulaC(u, v), with 0 ≤ u, v ≤ 1, of the random vector(U, V ) is called Archimedean if there exists a

continuous, strictly decreasing function,ψ : [0, 1] 7→ [0,∞] with ψ(1) = 0, such that

C(u, v) = ψ[−1](ψ(u) + ψ(v)).

The functionψ[−1] : [0,∞] 7→ [0, 1] is defined byψ[−1](x) = ψ−1(x)1[0,ψ(0)](x) and is called the

generator of the copulaC. Denote byFt the conditional distribution function

Ft(u) := P (U ≤ u|U ≤ t, V ≤ t), 0 ≤ u ≤ 1.

The extreme tail dependence copula of the copulaC relative to a thresholdt is given by

Ct(u, v) = P (U ≤ F−1
t (u), V ≤ F−1

t (v)|U ≤ t, V ≤ t).

If C is an Archimedean copula having a regularly varying differentiable generatorψ ∈ R−α with 0 <
α <∞, then

lim
t→0+

Ct(u, v) = CClα (u, v), (23)

for all 0 ≤ u, v ≤ 1. The limit copula in this result,CClα , is the Clayton copula with parameterα > 0
defined by

CClα (u, v) = (u−α + v−α − 1)−1/α,

for 0 < u , v ≤ 1. Juri and Ẅuthrich (2002) show that the conditionψ ∈ R−α is a very natural one

which holds for several known examples.

For the one hour pseudo–returns of DEM and JPY,(F̂1n(x1i), F̂2n(x2i)) with i = 1, . . . , n, we

considered several thresholdst (both in the joint left as well as in the joint right tails) and fitted copula

modelsCt. The thresholds and the resulting data are to be found in Figure16. Hence we want to model

Ct−(u, v) = P (U ≤ F−1
t (u), V ≤ F−1

t (v)|U ≤ t, V ≤ t)

as well as

Ct+(u, v) = P (U ≤ F−1
t (u), V ≤ F−1

t (v)|U ≥ t, V ≥ t).

In each case we fitted a list of copula models including the Gaussian,t, Gumbel, Frank, Clayton,
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Figure 15:The bivariate excesses of the one hour returns for different thresholds.
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Figure 16:The bivariate excesses of the one hour returns mapped into the unit square by the empirical

distributions of the margins. Only the tail regions are shown.

30



Figure 17:Comparison of the AIC values for the different thresholds.

survival Gumbel, survival Clayton and Farlie–Gumbel–Morgenstern copulas. For the definition of the

copulas used, seeEmbrechts et al.(2002), Nelsen(1999) andJoe(1997). The “survival” stands for the

copula applied to minus the random variables (hence left and right tails are exchanged). The results

are reported in Tables4 and5 where the models fitted are ranked by Akaike’s information criterion.

In Table4 are the results forCt− . The second column contains the number of observations belowt

in percentage of the total data. For thet copula, the first parameter estimate is the correlation and the

second is the degrees of freedom. The Clayton copula is always the best one. Remember that the best

fitting for the dependence structure of the full hourly data set was attained with thet copula, although

without passing the goodness–of–fit test. Note that, for the considered thresholds, the Clayton parameter

ranges from̂α = 0.556 to α̂ = 0.609 which corresponds to a Kendall tau coefficient betweenτ̂ = 0.217
andτ̂ = 0.233 (for the Clayton copula with parameterα, τ = α/(α + 2)). Table5 contains the results

for Ct+ . In this case, the survival Clayton copula yields the best fit. In this case the survival Clayton

parameter varies between̂α = 0.574 andα̂ = 0.666, corresponding to a Kendall tau from̂τ = 0.223 to

τ̂ = 0.250. Hence showing a slightly stronger dependence than for simultaneously small returns. Both

tables are summarised graphically in Figure17 (similar to Figure12 for the full copula data).

31



Threshold n. obs. Model Estimate s.e. AIC p-value
Clayton 0.583 0.059 -132.19 0.99
Surv. Gumbel 1.295 0.034 -122.04 0.99
t 0.335; 13.69 0.033; 8.219 -88.00 0.99

0.03− 759 Gaussian 0.336 0.030 -86.79 0.92
(0.98%) Frank 2.031 0.227 -78.13 0.95

F–G–M 0.873 0.086 -70.48 0.40
Gumbel 1.195 0.033 -41.71 0.89
Surv. Clayton 0.238 0.052 -21.81 0.45
Clayton 0.561 0.043 -227.74 0.98
Surv. Gumbel 1.298 0.025 -227.13 0.99
t 0.342; 8.40 0.025; 2.31 -188.48 0.97

0.05− 1 376 Gaussian 0.348 0.022 -173.46 0.68
(1.77%) Frank 2.070 0.169 -147.70 0.78

F–G–M 0.863 0.062 -129.49 0.10
Gumbel 1.223 0.024 -110.96 0.78
Surv. Clayton 0.305 0.039 -72.38 0.23
Clayton 0.556 0.035 -350.71 0.99
Surv. Gumbel 1.283 0.020 -330.20 0.93
t 0.330; 11.44 0.019; 3.35 -248.47 0.95

0.07− 2 112 Gaussian 0.328 0.018 -236.91 0.79
(2.72%) Frank 1.999 0.135 -216.32 0.84

F–G–M 0.903 0.054 -204.21 0.17
Gumbel 1.200 0.019 -132.03 0.86
Surv. Clayton 0.244 0.031 -66.80 0.27
Clayton 0.558 0.028 -547.96 0.91
Surv. Gumbel 1.289 0.016 -529.62 0.61
t 0.340; 13.43 0.015; 3.62 -418.10 0.85

0.1− 3 273 Gaussian 0.342 0.014 -403.71 0.81
(4.21%) Frank 2.046 0.108 -352.09 0.74

F–G–M 0.897 0.040 -326.39 0.07
Gumbel 1.209 0.015 -230.55 0.81
Surv. Clayton 0.273 0.025 -140.27 0.15
Clayton 0.556 0.018 -1302.15 0.96
Surv. Gumbel 1.289 0.010 -1257.91 0.79
t 0.340; 12.19 0.010; 1.90 -1000.15 0.82

0.2− 7 807 Gaussian 0.339 0.009 -952.77 0.21
(10.0%) Frank 2.085 0.070 -870.88 0.47

F–G–M 0.905 0.026 -803.05 0.001
Gumbel 1.211 0.010 -555.75 0.50
Surv. Clayton 0.271 0.016 -324.74 0.01
Clayton 0.609 0.014 -2547.77 0.47
Surv. Gumbel 1.330 0.008 -2546.12 0.68
t 0.383; 12.59 0.007; 1.52 -2178.67 0.85

0.3− 13 359 Gaussian 0.381 0.006 -2097.90 0.06
(17.2%) Frank 2.401 0.054 -1944.88 0.39

F–G–M 0.982 0.015 -1750.99 0.00
Gumbel 1.260 0.008 -1374.71 0.20
Surv. Clayton 0.348 0.012 -889.42 0.00

Table 4: Fitting results for bivariate excesses on the third quadrant of one hour returns for different
thresholds.
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Threshold n. obs. Model Estimate s.e. AIC p-value
Surv. Clayton 0.601 0.060 -137.23 0.94
Gumbel 1.306 0.035 -130.25 0.97
t 0.343; 8.42 0.034; 3.45 -98.15 0.98

0.97+ 745 Gaussian 0.350 0.030 -93.00 0.91
(0.96%) Frank 2.048 0.229 -77.25 0.96

F–G–M 0.878 0.090 -68.27 0.33
Surv. Gumbel 1.221 0.033 -54.98 0.93
Clayton 0.278 0.054 -29.41 0.42
Surv. Clayton 0.666 0.046 -288.12 0.92
Gumbel 1.351 0.027 -280.52 0.57
Gaussian 0.403 0.021 -230.68 0.94

0.95+ 1 331 t 0.400; 23.09 0.022; 16.97 -230.50 0.84
(1.71%) Frank 2.417 0.172 -196.73 0.71

F–G–M 0.999 0.072 -189.17 0.25
Surv. Gumbel 1.267 0.026 -142.60 0.87
Clayton 0.359 0.041 -91.74 0.52
Surv. Clayton 0.597 0.036 -378.41 0.99
Gumbel 1.299 0.021 -350.57 0.92
t 0.339; 11.25 0.020; 3.40 -260.50 0.95

0.93+ 2 014 Gaussian 0.344 0.018 -249.74 0.92
2.59%) Frank 2.032 0.139 -212.26 0.86

F–G–M 0.896 0.054 -196.21 0.15
Surv. Gumbel 1.203 0.020 -131.48 0.93
Clayton 0.248 0.032 -69.92 0.30
Surv. Clayton 0.583 0.028 -575.19 0.93
Gumbel 1.299 0.017 -550.75 0.78
t 0.345; 11.97 0.016; 3.13 -428.26 0.89

0.9+ 3 167 Gaussian 0.351 0.014 -413.18 0.82
(4.07%) Frank 2.050 0.110 -340.33 0.83

F–G–M 0.896 0.043 -309.91 0.05
Surv. Gumbel 1.215 0.016 -236.88 0.80
Clayton 0.277 0.025 -141.00 0.10
Surv. Clayton 0.574 0.018 -1376.35 0.99
Gumbel 1.298 0.010 -1327.02 0.83
t 0.345; 10.76 0.010; 1.56 -1055.79 0.87

0.8+ 7 765 Gaussian 0.348 0.009 -1001.24 0.27
(9.99%) Frank 2.091 0.071 -868.78 0.41

F–G–M 0.910 0.026 -797.18 0.00
Surv. Gumbel 1.218 0.010 -599.50 0.41
Clayton 0.280 0.016 -352.28 0.01
Surv. Clayton 0.594 0.014 -2459.31 0.84
Gumbel 1.315 0.008 -2426.10 0.60
t 0.366;11.63 0.007; 1.36 -2014.98 0.75

0.7+ 13 300 Gaussian 0.367 0.007 -1928.50 0.09
(17.1%) Frank 2.253 0.054 -1718.03 0.27

F–G–M 0.954 0.018 -1561.01 0.00
Surv. Gumbel 1.242 0.008 -1226.49 0.22
Clayton 0.320 0.012 -770.77 0.00

Table 5: Fitting results for bivariate excesses on the first quadrant of one hour returns for different
thresholds.
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6 Conclusion and further work

In this paper we analysed the dependence structure within two–dimensional, high–density FX return

data. The methods used are copula modelling together with statistical techniques for extremal clustering.

An overall picture emerged that is as follows: At all time horizons the data can be fitted best with

t-copulas with successively higher degrees of freedom as the time horizon increases. Note that the t-

copula is rejected for the shortest horizons because of the large amount of data. This means that the

t-copula has not enough structure to properly describe the details which can be discerned with such a

large sample. The test for ellipticality is not rejected except for the 1 hour and 2 hours horizons if the

margins are transformed to t-distribution with the number of degrees of freedoms adjusted to the result of

the copula fit. With the empirical margins, ellipticality is rejected for horizons of 8 hours and shorter. The

spectral measure, however, shows pronounced peaks in the diagonals for all time horizons. An analysis

of the multivariate excesses of hourly returns shows that the lower left tails are best described with

Clayton/survival Gumbel copulas while the upper right tails are best described with Gumbel/survival

Clayton copula. These results are predicted by theory.

Our results extend the univariate stylized facts to the bivariate case and give valuable indications for

time series models. However, further work is no doubt necessary at several levels. For instance:

• Though we introduced a method for multidimensional deseasonalisation, more work on this topic

is needed. This not only for higher dimensional data, but also for different types of data. We

thrust our results to be fairly insensitive with respect to changes in the deseasonalisation used for

the time horizons investigated. For time horizons larger than one day deseasonalisation has to be

done differently, as discussed in Section 2.3.4. Besides the method presented in Section2.3, we

analysed the data also using different time transformation tools.

• Throughout, we used a static stochastic model. As in the one–dimensional case, stationary models

allowing for a richer volatility structure (as there are GARCH and stochastic volatility effects) are

to be analysed. The methods introduced may then be used at the level of the residuals.

• There are several statistical issues which no doubt need a more detailed discussion. The large data

size at the high–frequency level would allow for non–(or semi–) parametric modelling. Also an

analysis taking a broader class of copulas into account could be useful; we analysed the data using

several mixture classes of standard copulas (as for instance inJunker and May(2002)). The results

obtained differed not significantly.

Acknowledgement

The authors take pleasure in thanking Guus Balkema, Filip Lindskog and Alexander McNeil for several

helpful discussions. We thank Olsen Data for providing the FX data.

References

Andersen T. G. and Bollerslev T., 1997, Intraday periodicity and volatility persistence in financial

markets, Journal of Empirical Finance,4(2-3), 115–158.

34



Andersen T. G. and Bollerslev T., 1998, Deutsche Mark-Dollar volatility: intraday activity patterns,

macroeconomic announcements, and longer run dependencies, the Journal of Finance,53(1), 219–

265.

Anderson T. W. and Darling D. A., 1954,A test of goodness of fit, Journal of the American Statistical

Association,49, 765–769.

Barndorff-Nielsen O. E. and Prause K., 2001,Apparent scaling, Finance and Stochastics,5, 103–113.

Beltratti A. and Morana C. , 1999, Computing value at risk with high frequency data, Journal of

Empirical Finance,6(5), 431–455.

Bollerslev T. and Ghysels E., 1996, Periodic autoregressive conditional heteroskedasticity, Journal of

Business & Economic Statistics,14(2), 139–150.

Breymann W., 2000, Dynamic theta time: Algorithm, configuration, tests, Internal document

WAB.2000-07-31, Olsen & Associates, Seefeldstrasse 233, 8008 Zürich, Switzerland.
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