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In time series problems, noise can be divided into two categories: dynamic noise which drives the process,
and observational noise which is added in the measurement process, but does not influence future values of
the system. In this framework, we show that empirical volatilities (the squared relative returns of prices)
exhibit a significant amount of observational noise. To model and predict their time evolution adequately,
we estimate state space models that explicitly include observational noise. We obtain relaxation times
for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five
months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals
that are consistent with white noise. We compare these results with ordinary autoregressive models
(without a hidden state) and find that autoregressive models underestimate the relaxation times by
about two orders of magnitude since they do not distinguish between observational and dynamic noise.
This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries
over to stochastic volatility models and to GARCH models, and is useful for several problems in finance,
including risk management and the pricing of derivative securities.
Data sets used. Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years).

Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

1. Introduction

Modeling and predicting the volatility of financial

time series has become one of the central areas

in finance and trading; examples range from pric-

ing derivative securities to computing the risk of a

portfolio. Volatility is usually predicted by using

generalized autoregressive conditional heteroskedas-

tic (GARCH) models; Bollerslev, Engle and Nelson

(1995) guide through the GARCH literature, and

Engle (1995) collects some of the key papers.

Here we present an alternative to GARCH that

models the underlying dynamics using a state space

model. This allows us to describe the hidden process

in terms of variables natural for a dynamic system,

such as decay times for shocks, its spectrum, and the

dimensionality of the underlying process. Stochastic

volatility models (see Shephard (1996) for a review)

are a variant of the general state space approach pre-

sented here. They differ in that the mapping from

the hidden variable to the observed variable is non-

linear. The interpretation developed in this article

can also be helpful for understanding and character-

izing stochastic volatility models.

This article is organized as follows: Section 2

discusses observational noise and dynamic noise

and reviews intuitions and interpretations for linear

systems, important for understanding the results

in physical terms such as decay times of volatility
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shocks. Section 3 defines and explains the formalism

of state space models. Variations and interpretations

that are typical in finance and in econometrics are

given in Sec. 4. Section 5 describes the three data

sets used for the empirical studies. The results are

presented in Sec. 6, and the effect of ignoring exist-

ing observational noise on the model is discussed in

Sec. 7. Section 8 summarizes the findings and dis-

cusses some of the applications of this approach for

noisy time series in finance.

2. Some Background Concepts

2.1. Observational noise and

dynamic noise

In time series modeling, one crucial question is

whether or not observational noise is present in the

data. Observational noise of a high level can pose a

severe problem if it is not treated properly, leading

to models that underestimate the functional relation

between past and future values. A typical example

of such observational noise is when an astronomer

observes a star: fluctuations in the atmosphere, or

a subway train passing by and shaking a telescope

that points to the star, will not influence the dy-

namics of the star. In contrast, a noise component

that does influence the dynamics of a system is called

dynamic noise. For example, in an autoregressive

process, the noise truly moves the state (sometimes

also expressed as “the noise drives the system”),

and subsequent values are derived from that moved

state.

This article focuses on discrete time dynam-

ics, typically modeled by difference equations or

maps. The distinction between observational noise

and dynamic noise is also important for continu-

ous time dynamics, typically modeled by differential

equations.

2.2. Interpretations of linear systems

To facilitate the interpretation of state space models

(introduced in Sec. 3), we first review autoregressive

processes without observational noise, and character-

ize them from several perspectives. A simple way of

generating a time series is through an autoregressive

(AR) process of order p, AR[p] (Yule, 1927; Priestley,

1981; Oppenheim and Schafer, 1989)

x(t) =

p∑

i=1

aix(t− i) + ε(t) , (1)

where ε(t) denotes an uncorrelated Gaussian dis-

tributed random variable with mean zero and con-

stant variance σ2, N (0, σ2). Through the eyes of
a physicist, such a process can be interpreted as

a combination of relaxators and damped oscillators

(Honerkamp, 1993). The simplest case is an AR[1]

process

x(t) = ax(t− 1) + ε(t) . (2)

It can be characterized in the time domain as a relax-

ator by an exponentially decaying impulse response,

proportional to exp(−t/τ), with the relaxation time

τ = −
1

log a
. (3)

After this time, the amplitude of an impulse will have

decayed to 1/e or 37% of its initial value.

In the frequency domain, an AR process can be

interpreted as a filter responding to white noise. The

power spectrum of an AR[1] process drops off with

S(ω) =
σ2

|1− ae−iω|2
=

σ2

1 + a2 − 2 cos ω
. (4)

For an AR[2] process, there are two qualitatively

different cases, depending on the values of the pa-

rameters. We can always rewrite a univariate AR[2]

model as a vector-valued AR[1] model using the

transformation

A =

(
a1 a2
1 0

)
. (5)

Its eigenvalues

λi =
a1
2
±

√
a21
4
+ a2 (6)

characterize the behavior of the AR[2] process. If

the eigenvalues are real (a21/4 + a2 > 0), the AR[2]

process can be characterized as the superposition of

two relaxators, and the spectrum drops off monoton-

ically with increasing frequency. The corresponding

decay constants are

τi = −
1

log λi
(i = 1, 2) . (7)

If the eigenvalues are complex, the AR[2] process de-

scribes a resonance, corresponding to a hump in the
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spectrum.a In both cases, the spectrum is given by

S(ω) =
σ2

|1− a1e−iω − a2e−2iω|2
. (8)

By increasing the model order, an AR[3] process can

combine a relaxator with an oscillator, and an AR[4]

process can describe two oscillators, etc.

Despite the simplicity and multiple interpretabil-

ity of AR models, not all processes in the world

are linear autoregressive. Examples of generaliza-

tions without hidden states consist of including past

q driving noise terms in the dynamics, yielding an au-

toregressive moving average ARMA[p, q] processes,b

as well as including nonlinearities.c Here we extend

autoregressive models in a different direction, by al-

lowing for a hidden state.d The next section intro-

duces the notation and gives the formalism of state

space modeling.

3. Formalism of Linear State Space

Models (LSSM)

In Eq. (1) the x(t) served two roles: it was the vari-

able that was observed, and it was the variable in

which the dynamics was expressed. However, there

are processes where the dynamics cannot be observed

directly because it is masked by observational noise.

Thus, no direct map exists from the observed data to

the state. This requires the notion of a hidden state.

In terms of notation, we keep the letter x as the vari-

able that contains the dynamics, and use y(t) for the

observed variable. The state, characterized by the

vector ~x(t), captures all the information needed to

characterize the system at time t.

The key to state space modeling is to split the

noise into two parts:

• dynamic noise ~ε(t) that drives the evolution of the

hidden state, and

• observational noise η(t) that is a non-explainable

additive contribution to the measured y(t).

These contributions have been discussed in intu-

itive terms in Sec. 2.1. Their formal role can be seen

by observing how they enter the two equations that

describe a linear state space model (LSSM):

~x(t) = A~x(t− 1) + ~ε(t) , ~ε(t) ∈ N (0, Q) (9)

y(t) = C~x(t) + η(t) , η(t) ∈ N (0, R) . (10)

Equation (9) describes the dynamics. Equation (10)

maps the dynamics to the observation and includes

the observational noise η(t).

As in the case of the observable linear autore-

gressive model, discussed in Sec. 2.2, describing the

process via physical quantities can yield important

insights. The spectrum of a LSSM is given by

S(ω)=C(1−Ae−iω)−1Q((1−Aeiω)−1)TCT+R.

(11)

The superscript (·)T denotes transposition. The

spectra of AR processes, Eq. (8), are a subset of

Eq. (11). Note that LSSM spectra include shapes

that cannot be generated by AR processes. An im-

portant example of such a shape is a spectrum where

for low frequencies the power drops similarly to an

AR[1] process (see Eq. (4)), but for higher frequen-

cies the power remains constant and does not con-

tinue to fall, as an AR model would require it to.

aFor a damped oscillator (the case of complex eigenvalues), the parameters can be expressed through the characteristic period T
and the relaxation time τ as

a1 = 2 cos

(
2π

T

)
exp(−1/τ)

a2 = − exp(−2/τ) .

bWhile for theoretical reasons ARMA[p, p − 1] should be preferred to AR[p] processes for modeling of sampled continuous-time
processes (Phadke and Wu, 1974), we find that in practice, differences in the results are small.
cThe linear mapping given by Eq. (1) can be generalized to become a nonlinear mapping. Note that this is fully within the autore-
gressive framework and amounts to simple regression. Nonlinear approaches include radial basis functions (Casdagli, 1989; Moody
and Darken 1989; Poggio and Girosi, 1990), neural networks (Lapedes and Farber, 1987; Weigend, Huberman and Rumelhart, 1990),
and nonparametric kernel methods (Tjostheim and Auestad, 1994).
dThis article explores the idea of a continuous hidden state, characterized by a scalar x(t) or a vector ~x(t). The dynamics is
expressed in terms of that unobserved state, and the state is subsequently mapped to the (conditional expectation of the) observed
quantity. In contrast, Hidden Markov models (Rabiner, 1989; Fraser and Dimitriadis, 1994; Hamilton, 1994; Bengio and Frasconi,
1995; Shi and Weigend, 1997) assume the hidden state to be discrete: for each of these hidden states, there is an “agent” or “expert”
(e.g. expressed as an autoregressive model) that generates the next data point. This introduces a second level of dynamics that is
described by the transitions between the hidden states. This level of dynamics is absent in a pure autoregressive framework.
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This can be interpreted as a low-frequency process

whose spectral energy decreases as the frequency in-

creases, until it is masked by a noise floor of a noise

source with a flat spectrum. This low-frequency sig-

nal above a flat noise floor is the crucial spectral sig-

nature of a LSSM that cannot be emulated by an

ordinary autoregressive model.

While parameter estimation in AR models is

well established (e.g. by the Burg or the Durbin–

Levinson algorithms), it is more cumbersome in the

case of state space models. A standard approach

uses the expectation maximization (EM) algorithm

(Dempster, Laird and Rubin, 1977), a general itera-

tive procedure for estimating parameters for models

with hidden variables. In the E-step, it is assumed

that the parameters of the model are known, and the

hidden variables are estimated. In the M-step, the

estimates of the hidden variables are taken literally

and the values of the parameters are adjusted. This

approach was first applied to LSSM by Shumway and

Stoffer (1982).

Specifically for the case of the LSSM, the first E-

step starts from the initial values of the parameters

A, Q, C, R, and estimates the hidden dynamic vari-

able ~x(t) using a Kalman filter. With the following

definitions

• zt|t′ := the predicted value of a quantity z(t) based

on the data y(1), . . . , y(t′),

• Ωt|t′ := the covariance matrix of the estimated

~x(t), and

• ∆t|t′ := the variance of the prediction errors

(y(t)− yt|t′),

the equations for the Kalman filter are (Kalman,

1960; Gelb, 1974; Sorenson, 1985; Harvey, 1989;

Aoki, 1990; Bomhoff, 1994; Hamilton, 1994, Mendel,

1995):

Ωt|t−1 = AΩt−1|t−1A
T +Q (12)

∆t|t−1 = CΩt|t−1C
T +R (13)

K = Ωt|t−1C
T∆−1

t|t−1 (14)

Ωt|t = (1−KC)Ωt|t−1 (15)

~xt|t−1 = A~xt−1|t−1 (16)

yt|t−1 = C~xt|t−1 (17)

~xt|t = ~xt|t−1 +K(y(t)− yt|t−1) . (18)

There is a crucial difference between the first four

equations and the last three. The first four equa-

tions, Eqs. (12)–(15), do not contain the data, they

only describe relations between the parameters A,

Q, C, R, Ω, ∆, and K. Their purpose is to find

the value of K (the Kalman gain) that subsequently

enters Eq. (18). K gives the appropriate weight to

the added term originating in the error between the

actual observation y(t) and prediction yt|t−1.

For true prediction, i.e. when y(t) has not yet

been observed, Eq. (16) has to be used for the un-

observed state variable, and Eq. (17) for the observ-

able. For model parameter estimation, on the other

hand, the entire training data can be used, and an

improved estimate of ~xt|N can be obtained by the

following three equations (Harvey, 1989):

B = Ωt|tA
TΩ−1
t+1|t (19)

~xt|N = ~xt|t +B(~xt+1|N −A~xt|t) (20)

Ωt|N = Ωt|t +B(Ωt+1|N − Ωt+1|t)B
T . (21)

This concludes the E-step.

In the subsequent M-step, the parameters A, Q,

C, R are updated; the derivation of the equations

can be found in Honerkamp (1993). The iterative

model fitting process ends when a convergence crite-

rion is met. This concludes the description of how

the model parameters are updated in the M-step.

Once a model has been built, its quality can be

evaluated by several different criteria, including:

• Predictive accuracy. True out-of-sample pre-

dictions are generated using Eq. (17) on a test set

that comes after the training period. The accu-

racy of the predictions can be compared to com-

peting models by different evaluation criteria, such

as squared errors or robust errors.

• Whiteness of the prediction errors. The

model should explain all temporal correlations in

the data: a perfect model takes the signal and

turns it into white noise. Statistically, the ques-

tion is whether we can reject (at a certain level of

significance) the null hypothesis that the residuals

are uncorrelated. Following Brockwell and Davis

(1991), we use a Kolmogorov–Smirnov test to de-

termine whether the periodogram of the residuals

is consistent with a flat white noise spectrum.

• Generating data from the model. The dis-

tribution of a certain feature can be derived from
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realizations of the model and compared with that

feature as directly computed from the observed

data.

For linear models, two additional criteria are

useful:

• Behavior in the time domain (relaxation

times). The parameters in linear models are re-

lated to relaxation times of the corresponding

oscillators and relaxators. When the relaxation

times are too small (of order of one time step),

they usually only fit noise and this indicates that

the order of the model is too large.

• Behavior in the frequency domain (spec-

trum). The spectrum of the linear process can be

computed from the parameters of the estimated

models through Eq. (11). Since the spectrum of

the model should correspond to the expectation

of the periodogram of the data, comparing the

spectrum to the periodogram is another important

qualitative criterion.

The suggestions listed here are just some of the use-

ful general criteria that will be used in this article.

For any specific problem, there are additional, more

specific smoke alarms and sanity checks.

4. Applications of State Space Models

to Finance

This section discusses two common applications of

state space models in financial data, and compares

them to our approach. For simplicity of notation,

this discussion is written for the case of a scalar x(t):

x(t) = ax(t− 1) + ε(t) (22)

y(t) = cx(t) + η(t) . (23)

The dynamic equation, Eq. (22), is characterized by

the single AR[1] coefficient a; ε(t) is the dynamic

noise that drives the dynamics. The observation

equation, Eq. (23), maps the unobserved state x(t)

to the observed variable by scaling it with c. The

added observational noise, η(t), does not enter the

dynamics.

4.1. Smoothing

The first approach decomposes the variance and re-

sults in a smoother series. It can be interpreted as

a method for trend estimation. Here, parameter a is

not estimated from the data to characterize the dy-

namics (as in our approach), but rather set to unity.

Without loss of generality we can also set c to unity,

yielding

x(t) − x(t− 1) = ε(t) (24)

y(t) = x(t) + η(t) . (25)

Equation (24) interprets ε(t) as the first difference of

the series. Reducing the variance of ε(t) by moving

some of it onto η(t) results in x(t) as a smoothed ver-

sion of y(t). The variance of the original data y(t) is

thus decomposed into observational noise, η(t), and

a smoother signal, x(t). This can be expressed in

a Bayesian framework as a prior on the smooth-

ness of the time series, as discussed by Kitagawa

and Gersch (1996). Note that Eq. (24) resembles

Brownian motion. However, it is not to be inter-

preted that way here, but as a smoothing constraint

for the undisturbed signal instead. The smaller the

ε(t), the smoother the x(t).

This smoothing approach is taken in most state

space applications in finance. Bolland and Connor

(1996) add to this approach a second non-constant

part that is a linear function of the difference of the

last two values of the state. This is effectively adding

a constraint on the second differences (curvatures) of

x(t), in addition to the first differences. Moody and

Wu (1996, 1997a, 1997b) use two variations of the

simple smoothing model with a = 1, and use the

term “true price” for the smoothed version of the

observed prices.

4.2. Variable parameter AR processes

The second variation of the state space model also

uses the state equation to model a slowly varying

quantity as in Eq. (24), but the interpretation of the

observation equation changes substantially. The con-

stant c from Eq. (23) is replaced by y(t − 1). The

equation then becomes

y(t) = x(t)y(t − 1) + η(t) , (26)

representing an AR[1] process. x(t) has become

an autoregressive parameter that slowly varies with

time, and the former observational noise η(t) now

acts as dynamic noise (Wells, 1996), whereas we as-

sume the parameters that characterize the system

are constant over time.
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4.3. Modeling noisy linear systems

The two cases above do not do justice to the dy-

namic structure of Eq. (22). In contrast, this article

focuses on estimating the full hidden dynamics from

the data. This allows us to characterize the process

as a linear damped system of relaxators and oscilla-

tors, driven by dynamic noise, and observed through

a veil of added observational noise.

In the econometric literature, stochastic volatil-

ity models have been used to describe the dynamic

structure of returns, see Shephard (1996) for a re-

cent review. In the notation of the present article, a

stochastic volatility model can be expressed as

x(t) = a0 + a1x(t− 1) + ε(t) (27)

y(t) = η(t) exp(x(t)) . (28)

The idea behind using exp(x(t)) is to model the

skewed distribution of squared returns found for the

empirical data. Parameter estimation in this model

is cumbersome due to the log-normal distribution

of exp(x(t)). It is usually based on the generalized

method of moments, quasi-likelihood estimation or

Markov chain Monte Carlo methods. In contrast to

stochastic volatility models, we apply a static trans-

formation to the data that will be introduced in the

next section in order to make the distribution of

squared return approximately normal. This allows

us to use the standard maximum likelihood frame-

work for the parameter estimation.

5. Data

This article reports results on the following data sets:

• High frequency DEM/USD foreign exchange

rates.eWe began with eight years of data (through

June 29, 1995) spaced apart 30 minutes in ϑ-time

(Theta-time). We dropped all points with miss-

ing values, and then took every fourth of the re-

maining points for our analysis, effectively down-

sampling to two hours in ϑ-time.f ϑ-time removes

daily and weekly seasonality: times of day with

a high mean volatility are expanded, and times

of day and weekends with low volatility are con-

tracted (Dacorogna, Gauvreau, Müller, Olsen and

Pictet, 1996).

• Daily stock indices. We use two stock indices:

— Nikkei 225 index (40 years of daily data,

through October 15, 1996, 12 288 points

total),g

— Dow Jones Industrial Average (25 years of

daily data, through October 16, 1987, 6252

points total).h

The top panel of Fig. 1 graphs the level of

DEM/USD for the first half of 1995. Its peri-

odogram, shown in the left panel of Fig. 2, drops

to first approximation as the spectrum of a random

walk whose 1/f2 line is also indicated. (f denotes the

frequency.) The signature of observational noise —

a noise floor masking the signal at high frequencies

— is absent: the periodogram continues to drop to

the highest time scale. The result is that price levels

p(t) of financial instruments do not exhibit signifi-

cant observational noise; all the “noise” on prices is

dynamic, i.e. it re-enters the dynamic equation.

The central panel of Fig. 1 shows the difference

of the logarithm of the price levels

log p(t)−log p(t−1)=log
p(t)

p(t−1)
≈
p(t)−p(t−1)

p(t−1)
.

(29)

This quantity can be interpreted as the logarithm of

the geometric growths, i.e. as the logarithm of the

ratio of the prices. It is known in finance as contin-

uously compounded returns. Using the fact that the

logarithm Taylor expands around 1 as log ε ≈ 1 + ε,

it can also be interpreted as the returns normalized

by the levels, i.e. the relative returns. Note in the

central panel of Fig. 1 that the width of the “band”

varies over time; regimes with larger shocks (posi-

tive or negative) alternate with regimes with smaller

widths. The corresponding periodogram of the rel-

ative returns is shown in the right panel of Fig. 2.

eWe thank Michel Dacorogna (Olsen & Associates, Zurich) for the high frequency DEM/USD exchange rate data.
fWhether half-hour or two-hour intervals in ϑ-time are taken does not change the results reported here, since the time scale of
the dynamics that we find is two orders of magnitude slower than the sampling interval. As an example for larger changes in the
sampling interval, Brown (1990) shows that the estimated (unconditional) volatility decreases by 13% as the sampling interval of
S&P 500 Index futures is changed from one minute to one hour.
gWe thank Morio Yoda (Nikko Securities, Tokyo) for the Nikkei 225 stock index data.
hThe Dow Jones Industrial Average data set is described in LeBaron and Weigend (1997) and available through
http://www.stern.nyu.edu/∼aweigend/Research.
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Fig. 1. This figure displays a six-month window of the high frequency foreign exchange data, sampled at two hour intervals
in ϑ-time. The top panel shows the prices, the middle panel shows the relative returns, and the bottom panel shows the
series used in our analysis, i.e. after applying the logarithm and scaling it to zero mean and unit variance.
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Fig. 2. Periodogram of the DEM/USD prices (left), and of the relative returns (right). Expressed in 1/time, the leftmost
points correspond to 1/(8 years), 1/(4 years), 1/(2.6 years), 1/(2 years). To guide the eye, we also plotted the 1/f2 drop
in spectral power of a random walk over six orders of magnitude. The periodogram of the returns on the right hand side
is essentially flat. Neither the prices nor the returns indicate the presence of observational noise, in contrast to Fig. 3.
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Note that it is essentially flat: the subsequent re-

turns on the two-hour time scale in ϑ-time appear to

be (linearly) uncorrelated.

To exploit this observed structure in the absolute

values of the relative returns, we square the relative

returns, i.e. ignoring their signs. The distribution of

the squared returns is very skewed. To make it less

skewed, we take their logarithm,

y(t) = log

[
log

p(t)

p(t− 1)

]2
. (30)

The logarithm of the squared relative returns, y(t), is

shown for the DEM/USD data in the bottom panel

of Fig. 1.

The squared relative returns can be interpreted

as independent realizations of a random variable

with a slowly changing mean. If the relative returns

log p(t)/p(t−1) were normally distributed with unit
variance, their squares would follow a χ21 distribu-

tion. The variance of this χ2 distribution is twice its

mean, implying that the realizations are very noisy

indeed! This is the source of the observational noise

for volatility. On empirical data, it is well known

that the relative returns log p(t)/p(t−1) are not nor-
mally distributed, but have fatter tails. However, the

spirit of the explanation for the observational noise

still applies; see also Diebold and Lopez (1995).

Figure 3 shows this effect. The periodogram of

the data contains most of its power at low frequen-

cies. Subsequently, as the frequency increases, it be-

gins to drop. Finally, it flattens out as the signal gets

masked by this “observational noise”, stemming from

the noisy realizations of the slowly changing means

of the squared returns. Note the absence of a daily

or weekly peak in this periodogram: while present

for data in chronological time, it has been success-

fully removed by Olsen’s projection of the data onto

ϑ-time. This periodogram is similar to figures in

Schnidrig and Würtz (1995) and in Andersen and

Bollerslev (1997). However, neither of these papers

interpret the signature as evidence for observational

noise, nor do they use a state space model to explain

the data.

The key features of the periodogram — a drop

over many orders of magnitude for price levels, a

roughly constant level for returns, and a low fre-

quency signal disappearing into observational noise

at higher frequencies for squared returns — hold for

all the financial data sets we analyzed, including six

other currencies on different time scales, as well as

several stock indices. The next section gives detailed

results for DEM/USD and Nikkei 225, as well as brief

results for the Dow Jones industrial index.

Table 1. Results for the volatilities of the DEM/USD exchange rates. While linear state space models
(LSSM) of order two and above fit the data well, ordinary AR models cannot explain the structure of
the data.

Models

DEM/USD
τ (decay times)
1 step = 2 hours

AR coefficients
Prob
white
noise

ENMS

LSSM(1) 156 0.994 0 0.960

LSSM(2) 240, 1.09

(

0.996 0
0 0.399

)

0.72 0.957

LSSM(3)
236
[T = 17 τ = 1.6]





0.966 0 0
0 0.507 −0.188
0 0.188 0.507



 0.57 0.957

LSSM(4)
243, 1.1
[T = 8.5 τ = 10]









0.996 0 0 0
0 0.411 0 0
0 0 0.666 −0.612
0 0 0.612 0.666









0.70 0.957

AR(1) 0.45 0.107 0 0.988

AR(2) 0.85, 0.64 0.100 0.066 0 0.984

AR(3)
1.25

0.097 0.062 0.044 2e-6 0.982
[T = 6.5 τ = 0.86]

AR(4)
1.8, 1.2

0.095 0.058 0.039 0.049 7e-4 0.979
[T = 4.1 τ = 1.2]
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6. Results

Table 1 summarizes the results for the high frequency

DEM/USD data, comparing linear state space mod-

els with ordinary AR models. The linear state space

models differ crucially from the AR models in the de-

cay times τ : while the decay times of the state space

models are significant, they are negligible for the AR

models where the processes typically decay within

one time step. Since the state space model is fitted

to y(t) as defined in Eq. (30), the decay times char-

acterize when the logarithm of the squared relative

returns has decayed to 37% of its initial value.

For first order models describing a single relax-

ator, there is a huge difference in decay time be-

tween 156 time steps for the LSSM in contrast to

insignificant 0.45 time steps for the AR process. The

eigenvalues of the second order models, given by

Eq. (6), turn out to be real; the process thus cor-

responds to the superposition of two relaxators. The

slower one of the two relaxators settles to around

240 of the 2-hour steps and corresponds to 20 days,

whereas the slower AR relaxator still decays in a sin-

gle time step. Using third and fourth order, oscilla-

tors emerge whose resonance frequencies 1/T corre-

spond to about one day. They might indicate a tiny

amount of periodicity left after the transformation of

the raw data to ϑ-time, but they do not contribute

significantly to the dynamics since their relaxation

times are of the order of a few time steps only.

The decay constants presented here are de-

fined for the logarithm of the squared relative re-

turns. Nonlinear transformations do not allow for

an amplitude-independent interpretations of decay

times in general. However, fitting state space mod-

els directly to the absolute or squared relative re-

turns (without taking the logarithm) yields similar

decay constants. This implies that our characteriza-

tion also hold for stochastic volatility models.

The fourth column in Table 1 shows that the

residuals of the state space model of order one are

not consistent with white noise, implying that a first

order LSSM does not describe the data adequately.

However, all higher order LSSMs produce residuals

consistent with white noise at a significance level of

0.05 for the Kolmogorov–Smirnov test on the white-

ness of the residuals (Brockwell and Davis, 1991).

None of the residuals of the AR models are consis-

tent with white noise. This is another indication

that AR models are not an adequate model class for

volatility.

The last column gives the normalized mean

squared error, ENMS, between the observed y(t) and

the predictions obtained via Eq. (17). Whereas for

LSSM, the error drops quickly to a constant level of

0.957 at order 2, it decreases for AR models at a

Table 2. Results for the volatilities of the Nikkei 225 stock index.
While linear state space models of order two and above fit the data
well, ordinary AR models cannot explain the structure of the data.

Models τ (decay times) Prob of
ENMS

Nikkei225 1 time step = 1 day white noise

LSSM(1) 63.1 0.004 0.906

LSSM(2) 81.8, 1.45 0.56 0.905

LSSM(3)
81.2

0.64 0.905
[T = 8.7 τ = 6.9]

LSSM(4)
81.7, 1.46

0.57 0.905
[T = 8.4 τ = 10]

AR(1) 0.54 0 0.975

AR(2) 1.20, 0.82 0 0.959

AR(3)
1.85

7e-7 0.951
[T = 6.6 τ = 1.05]

AR(4)
2.93, 1.59

0.002 0.940
[T = 4.15 τ = 1.61]
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much slower rate, and also remains at a higher level.
In an AR(10) model, for example, ENMS takes the
value of 0.973, still significantly above the value of
the second order LSSM.
We now turn to the power spectra. The curves

in Fig. 3 are the power spectra of the state space
models.i They are computed using Eq. (11). There
is a clear difference between the first order spectrum
and the higher order spectra. The higher orders
(> 2) are very similar, indicating that the second or-
der state space model is indeed sufficient. The spec-
tra of the state space models correspond well to the
periodogram of the data. Note that the spectra are
not obtained by some direct smoothing of the peri-
odogram in frequency space, but are the spectra of
the state space models which were fitted in the time
domain.
The results for the second data set, the logarithm

of absolute values of the relative changes of the daily
Nikkei 225 level, are summarized in Table 2. The key
point is the large decay time of about 3.5 months,
revealed by the state space models of order two and
above, as well as the failure of AR models, very sim-
ilar to the DEM/USD data set discussed.
The third data set, the logarithm of absolute val-

ues of the relative changes of the daily Dow Jones
Industrial Index, reveals a decay time of 117 days or
about five months. In that case, a one-dimensional
hidden state already generates residuals that are con-
sistent with white noise. As in the other two exam-
ples, no ordinary AR model in the observed variable
explains the data. This effect will be clarified in the
next section.

7. Ignoring Observational Noise

The failure of AR models shown in the previous sec-
tion is a consequence of the observational noise that
is present in the volatility data. Whereas linear state
space models include the observational noise explic-
itly in the model, autoregressive models assume that
the data is free from observational noise. We use a
simple first order process to demonstrate the conse-
quences of ignoring observational noise on the au-
toregressive parameter.
In an AR[1] model, x(t) = ax(t − 1) + ε(t), the

parameter a can be estimated without bias as

â =

∑
x(t − 1)x(t)∑
x(t− 1)x(t− 1)

. (31)

If, however, the dynamics is covered by observational
noise

y(t) = x(t) + η(t) , η ∼ N (0, R) , (32)

the expected value (denoted by 〈·〉) of â, estimated
in analogy to Eq. (31) from y(t), now becomes

〈â〉 =
〈y(t− 1) y(t)〉

〈y(t− 1) y(t− 1)〉
=

a

1 + R/〈x(t)2〉
. (33)

Thus, the larger the variance R of the observa-
tional noise, the worse the parameter a will be
underestimated. This effect is known from lin-
ear regression as the problem of errors-in-variables
(Fuller, 1987). It was first mentioned in time se-
ries context by Kostelich (1992), see also König and
Timmer (1997). The underestimation of the func-
tional relation between past and present values car-
ries over to more general models, including nonlin-
ear models (Carroll, Ruppert and Stefanski, 1995,
Weigend, Zimmermann and Neuneier, 1996).

8. Summary and Applications

This article showed the important distinction be-
tween observational and dynamic noise. When obser-
vational noise is present, an autoregressive approach
cannot model the data adequately — a state space
approach is needed to capture the hidden dynamics.
In finance, neither prices nor returns tend to have
observational noise. However, volatilities do exhibit
signature of observational noise in the periodogram:
for low frequencies, there is structure above the noise
floor of observational noise.
We showed on three representative financial data

sets that a linear state space model with full dynam-
ics can describe volatilities well. We also showed that
the resulting models can be nicely interpreted, both
from the perspective of physics as a superposition of
two simple relaxators, and from the perspective of
finance as volatility clustering with a decay time of
about three weeks (for DEM/USD), 3.5 months (for
Nikkei 225), and five months (for Dow Jones Indus-
trial Average). These results are in strong contrast to
AR models that ignore observational noise and con-
sequently have a bias toward too small coefficients,
as shown in Sec. 7. The more promising modeling
approach using state space models over AR models
for volatility suggests several applications in financial
markets, including

iThe spectra and the periodogram are normalized. For the lowest 200 frequencies, all periodogram points are plotted. Above this
frequency, they are logarithmically thinned out for the sole reason to keep the files reasonably small for the on-line version. The
visual impression in the printed version does not change.
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• Estimating risk. Knowing the evolution of the
volatility is important for determining the risk as-
sociated with a position on a financial instrument:
the volatility can be interpreted as the conditional
standard deviation of the returns.
• Pricing derivative securities. Using finan-
cial theory, discrepancies between the predicted
volatility and the implied volatility can be trans-
lated into mispricings, which can in turn be ex-
ploited in trading.
• Information for regime switching models.
The predicted volatility can be an important input
for trading models based on the “gated experts”
architecture (Weigend, Mangeas and Srivastava,
1995). In this case, the hidden state is offered as
an additional input to the gate to help determine
the current region.

In summary, we discussed the signature of obser-

vational noise in the frequency domain and showed

on three data sets that volatilities exhibit that sig-

nature, but not the prices or returns. We showed

that allowing for a hidden process with two or more

degrees of freedom, and modeling the full dynamics

of this process, gives interpretable results yielding

residuals consistent with white noise. We are cur-

rently evaluating on several time horizons the per-

formance for true volatility predictions of state space

models in comparison to an approach using historic

data (Figlewski, 1994), to GARCH (Bollerslev et al.,

1995), and to stochastic volatility models (Shephard,

1996).
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